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Abstract—Short-term electricity demand prediction is of great
importance to power companies since it is required to ensure
adequate capacity when needed and, in some cases, it is needed
to estimate the supply of raw material (e.g., natural gas) required
to produce the required capacity. The deregulation of the power
industry in many countries has magnified the importance of
this need. Research in this area has included the use of shallow
neural networks and other machine learning algorithms to solve
this problem. However, recent results in other areas, such as
Computer Vision and Speech Recognition, have shown great
promise for Deep Neural Networks (DNN). Unfortunately, far
less research exists on the application of DNN to short-term load
forecasting. In this paper, we apply DNN as well as other machine
learning techniques to short-term load forecasting in a power
grid. The data used is taken from periodic smart meter energy
usage reports. Our results indicate that DNN performs quite
well when compared to traditional approaches. We also show
how these results can be used if dynamic pricing is introduced
to reduce peak loading.

Index Terms—Deep Neural Networks, Machine Learning,
Smart Grid, Load Forecasting

I. INTRODUCTION

Forecasting electrical loads can be split into three groups,

short-term forecasting (one hour to a few weeks), medium-

term forecasting (a few weeks to a few months) and long-term

forecasting (a few months to years). Recently there has been

tremendous research done in the area of short-term load fore-

casting (STLF) [1]. This increase has been partly due to the

deregulation of the power industry throughout many countries.

STLF can assist many companies and sectors by providing an

accurate means to predict future loads which would lead to

precise planning, estimates of supplies and determining prices.

This leads to decreases in operating cost, increase in profit and

a more reliable electricity supply. Over the past decades of

research in STLF, there have been numerous models proposed

to solve this very pertinent problem. These models have been

classified into classical approaches and machine learning based

techniques [2].

In recent years, many deep learning methods have been

shown to achieve state-of-the-art performance in many re-

search areas: speech recognition [3], computer vision [4] and

natural language processing [5]. This promise has not been

demonstrated in other areas of computer science due to a

lack of thorough research. Deep in this case refers to having

a larger number of hidden layers than the traditional Feed

Forward Neural Networks. The concept of having multiple

layers is not new, however, but only recently was there an

efficient way to train and accurately use Deep Neural Networks

(DNN). Deep-learning methods are representation-learning

methods with multiple levels of representation obtained by

composing simple but non-linear modules that each transform

the representation at one level (starting with the raw input) into

a representation at a higher, slightly more abstract level [6].

With the composition of enough such transformations, very

complex functions can be learned.

In this paper we compare deep architectures and traditional

methods when applied to our STLF problem and we also

provide a comprehensive analysis of numerous deep learning

models. We then show how these methods can be used to assist

in the pricing of electrical rates. To the best of out knowledge,

there are only a handful of papers showing any sort of compar-

isons and analysis, but they are not very detailed. This work

makes use of Stacked Autoencoders, Convolutional Neural

Networks, Recurrent Neural Networks and Long-Short-Term

Memory for the deep architectures. For traditional methods

we consider moving averages, regression trees and support

vector regressions. The data is based on one year of smart

meter data collected from residential customers. We apply each

of the algorithms to the curated data while also noting the

corresponding runtimes. Due to differences in electricity usage

between the week and the weekend, we then split the data into

two new datasets: weekends and weekly data. The algorithms

are applied to these new datasets and the results are analyzed.

The results show that the deep architectures are superior to

the traditional methods, and achieve the lowest error rate but

they have the longest run-time.

II. BACKGROUND

A. Traditional Methods

The traditional methods that were selected are: weighted

moving average (WMA), linear regression (MLR) [7], re-

gression trees (RT) [8], support vector regression (SVR) [9]

and multilayer perceptrons (MLP) [10]. These methods were

selected due to their popularity in the literature and usage in

the industry.

B. Deep Neural Networks

Deep Neural Networks (DNN) prove to be more advanta-

geous than MLP networks since they can succinctly represent

a significantly larger set of functions. We use a number of

these varied architectures and provide a brief explanation of

each.

Stacked Autoencoders (SA) utilize a stacked architecture,

where there is an autoencoder in each layer. An autoencoder
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is an unsupervised learning algorithm that is trained to recon-

struct the input in the output layer, i.e., setting the target values

y = {y1, y2, . . .} to be equal to the inputs x = {x1, x2, . . .},

yi = xi. There are two main parts of the autoecnoder: the

encoder and the decoder. The encoder maps the input space X

to a feature space F, while the decoder maps the feature space

F to the input space X. Using one hidden layer, the encoder

calculates:

z = σ1(Wx+ b) (1)

and the decoder calculates:

x̂ = σ2(Ŵz+ b̂) (2)

where W and Ŵ are the weight matrices for the input and

output layers and σ is the activation sigmoid function defined

in MLP. The loss function for the autoencoder is:

J(x, x̂) = ‖x− x̂‖2 =
∥∥∥x− σ2

(
Ŵ
(
σ1

(
Wx+ b

))
+ b̂

)∥∥∥
2

(3)

For a SA, we layer autoencoders one onto the other, where

the output of one autoencoder becomes the input of another. A

typical MLP can be added to the last autoencoder to perform

prediction of time series data.

Recurrent Neural Networks (RNN) are another architec-

ture. RNNs are neural networks containing feedback loops thus

allowing the persistence of information. They consist of units

interacting in discrete time via directed, weighted connections

with weights wij , from unit j to unit i. Every unit has an

activation ŷ(t) updated at every time step t (t = 1, 2, . . .). An

activation, ŷi, of unit i is updated by computing its network

input sum N i where

N i(t) =
∑

j

wij ŷ
j(t− 1) (4)

and squashing it with a differentiable function (such as the

sigmoid function) σ gives:

ŷi(t) = σ(N i(t)) (5)

We define learning in RNNs as optimizing a differentiable

objective function E, summed over all the time steps of all

sequences by adapting the connection weights. E is based on

supervised targets yk, where k indexes the output units of the

network with activation ŷk. An example is the squared error

objective function:

E(t) =
1

2

∑

k

ek(t)
2 (6)

where ek = yk(t)− ŷk(t) which is the external error. E(t)
represents the error at time t for one sequence component

called a pattern. For a typical dataset consisting of sequences

of patterns, E is the sum of E(t) over all patterns of all

sequences. A gradient descent learning algorithm for RNNs,

computes the gradient of E with respect to each weight wij

to determine the weight changes δwij :

δwij(t) = −τ

∂E(t)

∂wij

(7)

where α is the learning rate [11].

III. ANALYSIS

A. Data Description

Our dataset consists of hourly samples over a the period

of a year and consisted of 18 features. The dataset was

broken into 3 parts for training, validation and testing of size

65%, 15%, 20% respectively. The readings were recorded at

hourly intervals throughout the year. Some of the features were

electrical load readings for the previous hour, the previous two

hours, the previous three hours, the previous day same hour,

the previous day previous hour, the previous day previous two

hours, the previous 2 days same hour, the previous 2 days

previous hour, the previous 2 days previous two hours, the

previous week same hour, the average of the past 24 hours

and the average of the past 7 days. The rest of the features

(which do not contain electrical load readings) are the day of

the week, hour of the day, if it is a weekend, if it is a holiday,

temperature and humidity. These features were selected as they

are the norm for STLF. In addition, the total electrical load in

this paper does not change significantly throughout the year,

since the households are located in a tropical country where

the temperature remains fairly constant throughout the year.

B. Method

As a preprocessing step, the data is cleaned and scaled to

zero mean and unit variance . All traditional methods use

cross-validation to determine appropriate values for the hyper-

parameters. Random grid search was used to determine the

hyper-parameters for the deep learning methods.

Several baseline algorithms were chosen. They include the

Weighted Moving Average (WMA) where yt+1 = αyi +
βyi−167 with α = 0.05 and β = 0.95, Multiple Linear

Regression (MLR) and quadratic (MQR), Regression Tree

(RT) with the minimum number of branch nodes being 8,

Support Vector Regression (SVR) with a linear kernel and

Multilayer Perception (MLP), with the number of hidden

neurons being 100.

For our Deep Neural Networks we used1: Deep Neural

Network without pretraining (DNN-W), DNN with pretraining

using Stacked Autoencoders (DNN-SA), Recurrent Neural

Networks (RNN), RNNs and Long Short Term Memory

(RRN-LSTM).

To evaluate the goodness of fit of these algorithms we use

the Mean Absolute Percentage Error (MAPE) defined as:

MAPE =
100

n

n∑

t=1

|yt − ŷt|

yt
(8)

1https://github.com/smhosein/deep learning stlf
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TABLE I
BASELINE ALGORITHMS

Algorithm MAPE MPE Time (s)

WMA 9.51 -1.96 100
MLR 24.25 -1.47 1
MQR 12.91 -7.63 7
RT 7.23 -1.71 15
SVR 13.65 3.16 19

TABLE II
DEEP NEURAL NETWORK ALGORITHMS

Algorithm 200 Epocs 400 Epocs

MAPE MPE Time(s) MAPE MPE Time(s)

MLP 5.62 -5.62 14 4.55 -4.54 25
DNN-W3 2.64 1.61 30 2.50 1.98 56
DNN-W4 5.71 -5.36 37 5.48 -5.32 72
DNN-W5 4.40 1.79 38 5.98 5.45 69
DNN-SA3 2.97 1.23 23 2.01 0.74 25
DNN-SA4 2.88 0.23 29 2.37 0.79 42
DNN-SA5 2.92 0.91 37 1.84 0.53 49
RNN 5.23 0.89 174 5.13 -0.37 359
RNN-LSTM 5.36 -1.26 880 5.27 -1.17 1528

where n is the number of data points, t is the particular time

step, yt is the target or actual value and ŷt is the predicted

value.

In order to determine the cost of the prediction errors (i.e.

whether the prediction is above or below the actual value) the

Mean Percentage Error (MPE) is used, which is defined as:

MPE =
100

n

n∑

t=1

yt − ŷt

yt
(9)

C. Numerical Results

We first look at the baseline methods, (with the exception of

MLP) in Table I. From the table we see that MLR performs

the worst, with a MAPE of 24.25%, which would indicate

that the problem is not linear (this is later confirmed by

Figure 1). However, the RT algorithm outperforms the rest

of the methods by a noticeable margin. This shows that the

problem can be split into some discrete segments which would

accurately forecast the load. This can be confirmed by looking

at the load in Figure 1 - it is clear that depending on the time

of day, there is significant overlap of the value of the load

between days. Thus, having a node in the RT determining the

time of the day would significantly improve accuracy. The run-

time for these algorithms was quite short with WMA taking the

longest due to the cross-validation step where we determined

all possible coefficients in steps of 0.05.

Due to the typically long running time of DNN architec-

tures, the algorithms were restricted to 200 and 400 epocs.

From Table II, there is a clear difference when looking at

the 200 epocs and the 400 epocs MAPE columns, as most

of the algorithms have a lower MAPE after running for 400

epocs when compared with 200 epocs. This is especially true

for the DNN-SA3 which saw significant drops in the MAPE.

Fig. 1. Actual vs Predicted Loads

The MLP did not perform the worst in both epocs but it was

always in the lower half of accuracy. This indicates that the

shallow network might not be finding the patterns or structure

of the data as quickly as the DNN architectures. However, it

outperformed RT in both the 200 and 400 epocs. This alludes

to the fact that the hidden layer is helping to capture some of

the underlying dynamics that a RT cannot.

Looking at the 200 epocs column, we see that DNN-W3

performs the best with a MAPE of 2.64%. On the other hand,

the most stable architecture is the DNN-SA with a MAPE

consistently less than 3%. This robustness is shown when the

epocs are increased to 400 where the DNN-SA architecture

outperforms all the other methods (both the baseline and

deep methods). The pretraining certainly gave these methods

a boost over the methods–especially due to the short training

time of the DNNs–as it guides the learning towards basins of

attraction of minima that support better generalization from

the training data set [12]. RNNs and to an extent LSTM have

an internal state which gives it the ability to exhibit dynamic

temporal behavior. However, they require a much longer time

to compute which is evident in Table II, as these methods had

trouble mapping those underlying dynamics of the data in such

a small number of epocs.

Taking both tables into consideration, most of the DNN

architectures vastly outperform the traditional approaches, but

DNNs require much more time to run and thus there is a trade-

off. For STLF, which is a very dynamic environment, time

cannot be wasted on waiting for a new model to complete

its training stage. Hence, this is another reason we limited

the number of epocs to 200 and 400. Table II shows that

limiting the epocs did not adversely affect many of the DNN

architectures as most were able to surpass the accuracy of the

traditional methods (some by a lot). When selecting a model,

one would have to determine if the length of time to run the

model is worth the trade-off of selecting a slightly less accurate

model but with a much shorter running time.

D. Daily Analysis

We know that people have different electrical usage patterns

on weekdays when compared to weekends. This difference can

be seen in Figure 2 which illustrates usage for a sample home.

This household uses more energy during the weekdays than on

weekends. There are electrical profiles that may be opposite,
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(a) Weekday Electrical Usage

(b) Weekend Electrical Usage

Fig. 2. Electrical Profiles

i.e., where the weekend electrical load is more. Whatever the

scenario, there are usually different profiles for weekdays and

weekends.

To see how our models handle weekdays and weekends, we

took the results gathered in section III-C and calculated the

average MAPE for each day of the week in the test set (the

400 epoc models was used for the DNNs calculations). The

average for each day of the week is tabulated in Table III.

From the table, it is clear that most of the DNN algorithms

have their lowest MAPE during the week. This is indicative

that the patterns for weekdays are similar and as a result have

more data. By having more data, DNNs are better able to

capture the underlying structure of the data and thus are able

to predict the electrical load with greater accuracy. Weekend

predictions have a higher MAPE since DNNs require a lot

of data to perform accurate predictions and for weekends this

data is limited. The WMA and MQR seem to have their best

day on Sunday, but have a very poor MAPE for the rest of

the days. This indicates that the models have an internal bias

towards Sunday and as a result fail to accurately predict the

values for other days. It is clear, again, that DNN outperform

the traditional methods.

E. Mean Percentage Error

In this particular domain, an electricity provider will also be

interested in changes of electrical load, as opposed to absolute

error in order to adjust generation accordingly, mostly because

starting up additional plants takes time. This is why the Mean

Percentage Error (MPE) was used. The MPE would tell that

a model with a positive value ”under-predicts” the load while

a negative value ”over-predicts” the actual value and they can

then adjust their operations accordingly.

Many of the traditional methods had predicted more electri-

cal load than the actual load, including MLP. However, most

TABLE III
DAILY MAPE VALUES

Algorithm Sun Mon Tue Wed Thu Fri Sat

WMA 5.71 10.05 8.87 10.24 10.74 10.37 10.67
MLR 65.46 27.61 12.55 11.39 9.01 9.38 35.59
MQR 1.17 11.92 9.88 14.24 14.11 17.11 13.24
RT 7.45 5.99 7.63 7.37 5.98 7.26 8.87
SVR 20.70 12.96 10.73 11.53 11.63 10.90 17.40
MLP 5.18 4.62 4.43 4.27 4.31 4.70 4.34
DNN-W3 2.95 1.88 2.12 2.49 2.54 2.46 3.12
DNN-W4 6.67 5.45 5.25 4.88 4.61 5.65 5.83
DNN-W5 7.23 5.53 5.56 6.14 6.13 5.81 5.48
DNN-SA3 2.29 1.84 1.76 1.97 1.87 2.03 2.35
DNN-SA4 2.67 2.19 2.00 2.14 2.27 2.55 2.82
DNN-SA5 2.28 1.47 1.63 1.93 1.60 1.76 2.22
RNN 5.38 5.30 4.41 5.14 5.11 5.35 5.45
RNN-LSTM 4.25 4.34 4.96 4.55 5.64 6.97 6.13

of the DNNs have under-predicted the load value. Looking at

the best in Table II, DNN-SAs MPE values (for 400 epocs),

they are all under 1% and positive, which indicates that it

under-predicts the value. However, one should not use the

MPE alone. An example is RNNs which have a low positive

MPE, however it’s MAPE in both epocs is around 5%. This

indicates that RNN had a slightly larger sum of values that

”under-predicts” than ”over-predicts”, but its overall accuracy

is not as good as other deep architectures.

F. Applications to Energy Efficiency

Using the results from STLF (MAPE and MPE), a company

can now accurately predict upcoming load. This would mean

that a power generating company, can now produce energy

at a much more precise amount rather than producing a lot

of excess energy that would be wasted. Since most of these

companies use fossil fuels which are non-renewable sources

of energy, we would be conserving them as well as reducing

levels of carbon dioxide released into the atmosphere and the

toxic byproducts of fossil fuels.

Another benefit of accurate load forecasting is that of

dynamic pricing. Many residential customers pay a fixed rate

per kilowatt. Dynamic pricing is an approach that allows the

cost of electricity to be based on how expensive this electricity

is to produce at a given time. The production cost is based

on many factors, which in this paper, is characterized by the

algorithms for STLF. By having a precise forecast of electrical

load, companies now have the ability to determine trends,

especially at peak times.

An example of this would be in the summer months many

people may want to turn on their air conditioners and thus

electricity now becomes expensive to produce as the company

could have to start up additional power generating plants to

account for this load. If the algorithms predict that there would

be this increase in electrical load around the summer months,

this would be reflected in the price that consumers would need

to pay. Now, many people would not want to keep their air

conditioner on all the time but use it only when necessary.

Taking this example and adding on washing machines, lights
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and other appliances, we can see the immense decrease in

energy that can be achieved on the consumer side.

IV. RELATED WORK

The area of short-term load forecasting (STLF) has been

around for many decades but deep learning has only recently

seen a surge of research into its applications. Significant

research has been focused on Recurrent Neural Networks

(RNNs). In the thesis by [13], RNNs was used to compare

other methods for STLF. These methods included modifi-

cations of MLP by training with algorithms like Particle

Swarm Optimization, Genetic Algorithms and Artificial Im-

mune Systems. Two other notable papers that attempt to apply

DNN for STLF are [14] and [15]. In [14], they compare

Deep Feedfoward Neural Networks, RNNs and kernelized

regression. In the paper by [15] a RNN is used for forecasting

loads and the result is compared to a Feedfoward Neural

Network.

In the wider area of time series forecasting, more research

has been done on deep learning architectures. Convolutional

Neural Networks (CNN) has seen recent interest and promis-

ing performance on a number of time series tasks. [16]

uses a novel CNN architecture for multivariate time series

classification. Also, [17] used CNN for multichannel time

series for human activity recognition. CNN was used by [18] to

predict the stock market, along with events which are extracted

from news text, and represented as dense vectors.

This lack of research into the crucial area of STLF and

pricing prompted this paper. In addition, there is no compre-

hensive source of information that researchers can reference to

determine whether deep architectures or classical techniques,

would be the best for their scenario.

V. CONCLUSION

There has been significant success using deep learning

for other applications, but this has not yet been illustrated

for applications in the power sector. In this paper, we show

comparisons of DNN and traditional approaches when applied

to short term load forecasting. The results indicate that certain

DNN architectures achieve greater accuracy than traditional

methods. Even when the results for weekdays and weekends

were analyzed, we see that DNNs still outperform traditional

methods. However, DNN still suffers from long computational

times but we showed that even by having a small number

of epocs, DNN architectures are still preferable. Given these

detailed comparisons, electrical companies can now make

more informed and accurate decisions about their projected

load and pricing among others.
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