
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

Heuristics for Advertising Revenue Optimization
in Online Social Networks

Inzamam Rahaman and Patrick Hosein
Department of Computer Science

The University of the West Indies

St. Augustine, Trinidad

inzamam@lab.tt, patrick.hosein@sta.uwi.edu

Abstract—Recent increases in the adoption of Online Social
Networks (OSNs) for advertising has resulted in the research
and development of algorithms that can maximize the resulting
revenue. OSN users are likely to be influenced by their friends;
therefore, one can leverage friendship relationships to determine
how advertisements should be distributed among users. If a
user is given an indication that their friend clicked on an
advertisement link (called an impression), then they are more
likely to also click on the impression if it were to be provided
to them. The problem of assigning impressions can be modeled
as an optimization problem in which the goal is to maximize
the expected number of clicks achieved given a fixed number
of impressions. Hosein and Lawrence [1] formulated this as a
Stochastic Dynamic Programming problem in which impressions
are provided in stages and the outcomes of previous stages are
used in making impression allocations for the present stage. How-
ever, the determination of the optimal solution is computationally
intractable for large problems; hence we require heuristics that
are efficient while providing near-optimal solutions. In this paper
we provide and compare various heuristics for this problem.

Index Terms—Online Social Networks, Optimization, Dynamic
Programming

I. INTRODUCTION

With the advent of low cost smart phones, the adoption rate

of the Internet continues to increase globally. One particular

application that is quite popular is Online Social Networking

(OSN) such as Facebook [2]. This has lead to companies

allocating an increasingly greater portion of their advertising

budget to providing advertisements on these OSNs [3]. Many

companies such as Google and Facebook derive the majority

of their revenue by providing this service to companies. Such

companies must determine the optimal placement, timing and

target audience for these advertisements. In [1], a Stochastic

Dynamic Programming model is provided for this problem

which we follow in this paper.

The model can be described as follows. A company pays on

a per impression basis for a given number of impressions for

its advertisements to be placed on the OSN. These impressions

are placed in stages. In each stage, a subset of the impressions

are allocated and the outcomes of these allocations (whether

or not the user clicked on the impression) are observed before

allocations are made in the subsequent stage. The decision of

each user given an impression (whether or not they clicked) is

made available to the user’s friends to whom impressions are

subsequently allocated so that they can take that information

into account. Typically, if one’s friend clicked an impression

then one is more likely to also click; consequently, the proba-

bility of clicking increases accordingly. Therefore, impressions

are placed in each stage such that the number of clicks

generated is maximized for a fixed number of impressions.

Moreover, in addition to allocating impressions in each stage,

one must also determine how many impressions should be

allocated in each stage. The number of clicks reflects the

number of users who may eventually purchase the products

and the resultant revenue derived by the company.

A. Related Work and Contributions

This paper is based on the model proposed by Hosein et. al.

[1]. In their model they considered a multi-stage deployment.

Prior work in this area considered the problem of influence

maximization [4], [5], [6], [7], [8] which can be considered as

a special case of a single stage of the formulation in [1]. In

[1] the model was presented and the optimal solution derived.

They also included a heuristic but no performance comparisons

were made. Our contributions include additional heuristics

for the problem as well as performance comparisons. The

proposed heuristics are fast enough to be used in a practical

deployment while providing near-optimal performance.

One difficulty in these influence models as well as the

model in [1] is the determination of the influence probabilities

between parties. In other words, how much are we affected

by the actions of our friends. In the paper by Lei et. al.

[9] feedback is used to update influence information. Several

heuristics have also been developed for the influence maxi-

mization model such as Prefix Excluding Maximum Influence

Path [10] and Influence Ranking and Influence Estimation

[11]. In our work we use a simple influence function that

was used in [1] since we believe that the relative performance

of the various proposed heuristics will not be affected by the

specific function used. We plan to do further work in this area.

The major contributions of this paper are the proposed

heuristics and the evaluation of these heuristics to demonstrate

their performance and computational efficiency. In the next

section we provide the mathematical model that is used. We

then provide details of the proposed heuristics followed by

numerical results.

IEEE/ACM ASONAM 2016, August 18-21

2016, San Francisco, CA, USA

978-1-5090-2846-7/16/$31.00 c© 2016 IEEE

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

II. MATHEMATICAL MODEL

OSNs can be represented as graphs. A graph comprises a

set of vertices, also called nodes, denoted by the set V and a

set of edges denoted by the set E. The vertices represent users,

and the edges represent a friendship relationship between

a pair of users. We assume that friendships are reciprocal.

Consequently, the graph representing the OSN is taken as

undirected. Note that this is not the case for some OSNs such

as Twitter. We denote the number of users in the OSN by

N = |V |.
In Hosein and Lawrence’s [1] model, friendships are taken

as exerting influence (positive or negative) on a user’s proba-

bility of clicking an impression. Suppose that u1 and u2 are

friends. If u1 clicks in a previous stage, then the probability

of u2 clicking in the present stage should increase. Likewise,

if u1 does not click when given an impression in a prior stage,

then the probability of u2 clicking in the present stage will, in

general, decrease. Since all friendships are assumed to have

the same degree of influence, the same influence function is

used for all pairs. Hence, the change in a user’s probability

of clicking is related to the number of their friends who have

clicked an impression and the number of their friends who

did not click. We use the following function to update the

probability of clicking given information of the user’s friends

actions in prior stages.

p← min {1, max {0, pinit + α
f

n
− β

g

n
}} (1)

where n is the number friends, pinit is the initial probability,

f is the number of friends that were provided impressions and

clicked and g is the number of friends that did not click their

allocated impression. The factors 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1
determine the degree of influence. In most realistic situations,

negative information (i.e. the fact that a friend did not click)

will typically not be provided since it is not in the provider’s

best interest to do so. This can be modeled by setting β = 0,

which we do for our numerical examples.

Impressions are allocated in batches at the start of a stage.

There is a set interval between stages in which a user’s

response to an impression is recorded. Both the number

of impressions to be distributed during an instance of the

problem, M , and the number of stages, K, are assumed

given. The optimization problem must be solved in each stage.

However, the number of impressions used in each stage must

also be determined. These are represented by the vector m
indexed 1 through K where mK−k is used to indicate the

number of impressions to use in the present stage with K− k
stages to go. Note that the determining optimal ~m is also a

difficult problem, so we also introduce an efficient heuristic for

determining this vector. Moreover, all impressions need not be

used; however, since the objective function is non-decreasing

with respect to the number of impressions, the the optimal

solution will contain the case in which all impressions are

used. Therefore, we will assume that
∑K−1

k=0 mk = M .

Let index k denote the number of stages to go such that in

the last stage k = 0 while in the first stage k = K−1. For each

value of k, the current state may be described by two vectors:

~x, which is used to denote whether or not a user was previously

given an impression; and ~c, which is used to denote whether

a user clicked on a prior impression. In addition, the vector ~u,

the decision vector, denotes whether or not an impression is

to be allocated in the present stage and the vector ~p represents

the probability of clicking. For each user i, these vectors are

updated in stage k as follows:

xk[i] = 1 if i was previously given an impression else it is 0

ck[i] = 1 if i clicked a given past impression else it is 0

uk[i] = 1 if i is given an impression in this stage else it is 0

pk[i] =

{

prob(ck−1[i] = 1|uk[i] = 1, ~xk,~ck) if xk[i] = 0

0 otherwise

For each stage, the expected number of clicks is obtained

by summing over all possible outcomes: for each outcome,

the probability of that outcome times the expected number

of clicks obtained from that outcome. This is determined by

the expected outcome from the allocations in the next stage.

We let the set of all possible outcomes be V ⊆ {0, 1}|V |.

Suppose ~v ∈ V , then v[i] = 0 if uk[i] = 0 (since a click cannot

occur without an impression) and v[i] = 0 or 1 if uk[i] = 1.

Therefore, |V| = 2mk since mk impressions are provided in

this stage. The probability that ~v occurs is given by

Pr(~v) =

N
∏

i=1

uk[i]{pk[i]v[i]+(1−pk[i])(1−v[i])}+1−uk[i]

(2)

For a given allocation, ~u, and outcome ~v we update ~xk−1 =
~xk+~uk since new impressions have been allocated and ~ck−1 =
~ck + ~v to account for new clicks.

If we let J∗
k−1(~xk−1,~ck−1, ~pk−1) be the optimal expected

number of clicks in the subsequent stage, then we may write

the optimal expected value for some stage k as:

J∗
k = max

~u∈{0,1}N

∑

~v∈V|~u

Pr(~v)J∗
k−1(~x

k + ~u,~ck + ~v, ~pk−1) (3)

subject to:

N
∑

i=1

u[i] = mk and ~u+ ~xk ≤ 1.

In the final stage we have:

J∗
0 = |~c0|+ max

~u∈{0,1}N

N
∑

i=1

p0[i]u[i] (4)

subject to:

N
∑

i=1

u[i] = m0 and ~u+ ~x0 ≤ 1.

and in this case the solution is simply the sum of the m0

largest probabilities. If we denote this optimal allocation by

~u∗ then:

J∗
0 = |~c0|+

N
∑

i=1

p0[i]u
∗[i] (5)

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

III. HEURISTICS

Determining the optimal solution of the problem formulated

in Hosein and Lawrence [1] is computationally intensive. With

k stages to go, there are
(

n
mk

)

possible ways of distributing the

impressions for that stage where n is the number of users who

have not yet been given an impression. For each such event,

a user given an impression may or may not click and hence

2mk possible outcomes must be evaluated. Thus,
(

n
mk

)

2mk

sub-problems must be solved when k−1 stages are left. Since

OSNs can be very large (on the order of millions of users),

heuristics must be used. One such heuristic was proposed (but

not evaluated) in Hosein and Lawrence [1]. In this section, we

consider that heuristic together with some of our own designs

to determine what will work best in a practical setting.

A. The Hosein-Lawrence Heuristic

Consider k stages to go with n users who are possible

candidates for impression assignments and mk impressions

to assign. We need to identify users u1, u2, . . . , umk
that

would yield the optimal expected number of clicks. First,

we identify the user u1 whom, with no other impressions

allocated in this stage, would be the best single candidate for

an impression. After identifying u1, we similarly identify u2.

However, along with our candidates for u2, we also allocate

an impression to the previously identified u1. After finding

the user u2 that yields the highest expected number of clicks

in concert with u1, we continue to proceed in this manner

until we have identified the user umk
. The impressions for

this stage are then assigned to users u1 through umk
. Since

the expected number of clicks in the final stage does not rely

on any subsequent stage’s results, the last stage procedure is

reduced to identifying the m0 users that have not be assigned

impressions who exhibit the highest probabilities of clicking.

This heuristic was analyzed in [1] for the two stage problem.

They show that, if we denote the computational complexity of

the optimal solution by Copt (in terms of number of single

stage problems that must be solved) and that of the heuristic

by Ch1 then the ratio of these complexities grow as follows:

Copt

Ch1
= O

(

1

n

(

n

m

))

(6)

where n users can be given impressions and m impressions

are to be allocated in the present stage.

B. The Maximum Influence (MI) Heuristic

Note that, at each stage, the probability of clicking is

updated for each user. In addition, we know who has already

been provided impressions in the past. In the present stage,

for each user who has not yet been given an impression, let

p[i] denote the clicking probability of user i. Furthermore let

d[i] denote the number of i’s friends who have not yet been

given an impression. Suppose we wanted to find the user

who, if given an impression, provides the largest influence

in the subsequent stage. One metric that can be used to

measure this is the product p[i]d[i]. In other words, as p[i]
increases then it is more likely that the user will click and

influence the next stage and as d[i] increases then the impact

of this influence (number of affected users) also increases.

Therefore this heuristic is as follows, in the present stage

we compute p[i]d[i] for each user and assign impressions to

those with the largest products. Note that both p[i] and d[i]
must be updated anyway and so the additional computation

due to this heuristic is minimal. Furthermore, note that the

computational complexity is independent of the number of

stages. At each stage there is only one possible set of users to

whom impressions will be allocated. The users to be allocated

impressions is found as previously described and once these

are known the number of subproblems equals the number of

possible outcomes 2mk .

C. Local Search and Monte Carlo Simulation (LSMC)

Note that there is a finite number of possible allocations

of impressions to users. Therefore we can potentially evaluate

each of these and choose the one that provides the largest

expected number of clicks. However, for large networks there

are two issues. Firstly the number of possible impression

allocations is large and secondly the evaluation of the expected

number of clicks for a given allocation is also computationally

intensive. We overcome these by (a) using a local search

approach over the impression allocation space and (b) using

Monte Carlo simulations to approximate the expected number

of clicks for a given allocation.

Suppose we start with some allocation of impressions to

users in each stage. We can compute the expected number of

clicks for this allocation to determine how well it performs but

this is computationally intensive. We instead use Monte Carlo

simulations to get a reasonable estimate for the allocation. In

the first stage, we randomly generate outcomes of the allocated

impressions using the click probabilities in the first stage. We

then compute the click probabilities in the second stage and

again randomly generate the outcomes for the impressions

allocated in the second stage based on the computed click

probabilities. We repeat this process for all stages and deter-

mine the number of clicks obtained. This is repeated several

times and the average taken to represent an estimate of the

expected number of clicks for the given allocation.

We choose a new allocation to evaluate as follows. We com-

pute click probabilities for each user for the present allocation

while performing the above Monte Carlo Simulations and take

their average. The new allocation is obtained by removing the

impression for the user with the lowest click probability and

providing it the user with no impression with the highest click

probability. One issue with this approach is that the average

click probability increases with each stage. To overcome this

we can normalize the probabilities in each stage so that the

average click probability over all users in each stage is the

same. After this is done we then do the comparisons for the

swap. Hence, using these two approaches we can reduce the

run time taken to get a reasonable estimate of the optimal

value. However we can get as close as we desire by (a)

increasing the number of allocations we search and (b) by

increasing the number of Monte Carlo evaluations.

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

TABLE I
DATASET PARAMETERS

Data Users Impressions Stages Avg No Friends pK−1

1 6 5 2 2.7 0.25

2 7 5 3 2.0 0.25

3 15 7 3 4.4 0.25

4 50 10 3 3.5 0.25

5 100 20 3 5.5 0.25

6 1000 20 2 100 0.20

IV. NUMERICAL RESULTS

A. Problem Datasets

To evaluate the performance and runtime of the heuristics

against the optimal solution, each method was implemented

in Python and run on a server with 2GB of RAM and a 1.8

GHz processor. We considered six datasets of varying sizes as

described in table I. Across the datasets we varied the number

of users, the number of impressions, the number of stages

and the network properties. Datasets 3 and 6 were constructed

using the Erdős-Rényi [12] model. In this model, we use two

parameters to generate a random graph, the number of nodes,

and the probability of an edge existing between two arbitrary

nodes. For each pair of nodes we randomly determine whether

or not an edge exists between them [13]. Probabilities of 0.26

and 0.11 were used to generate datasets 3 and 6 respectively.

Datasets 4 and 5 were sampled from the Stanford Network

Analysis Project’s Facebook dataset [14] to generate a graph

with 50 and 100 users respectively. For each dataset, the

function used to update a user’s probability of clicking is as

described in 1 with α = 0.25 and β = 0. We set the initial

click probability, pK−1 to 0.25 for datasets 1-5 and 0.2 for

dataset 6.

B. Performance and Runtime Comparisons

In this section we provide a comparison of the performance

results for the six datasets. For datasets 1-3 the optimal

solution is computed while LSMC evaluations are used for

comparison in the remaining datasets. The results are provided

in Table II. In Table II, we also provide the impression

vector that produced the optimal solution. These were obtained

by evaluating all possible impression vectors. Note that the

Hosein-Lawrence heuristic require impractical runtimes for

datasets 4-6 and so were not determined.

Another important criterion is the heuristic runtimes. In a

real system the solution will have to be computed for much

larger network. Hence, low runtimes are essential. In Table II

we also provide the runtime values for the different datasets for

each method. Note that the LSMC values are just for the time

taken to reach the stopping criterion we used. As seen in Table

II, the time taken by the optimal formulation grows quickly as

the size of the OSN grows, highlighting the need for heuristics.

Although the Hosein-Lawrence heuristic performs well, its run

time increases quickly with problem size; thus it is not suitable

for large problems. On the other hand the Maximum Influence

Heuristic provides acceptable values with reasonable runtimes

TABLE II
PERFORMANCE AND RUNTIME COMPARISONS

Data Method Optimal ~m Value Time (ms)

1

Optimal [2, 3] 1.40 64

Hosein and Lawrence [2, 3] 1.40 32

Maximum Influence [3, 2] 1.38 8

2

Optimal [2, 2, 1] 1.56 56841

Hosein and Lawrence [1, 2, 2] 1.54 4678

Maximum Influence [1, 2, 2] 1.52 48

3

Optimal [2, 2, 3] 2.03 170967777

Hosein and Lawrence [2, 2, 3] 2.03 211516

Maximum Influence [2, 2, 3] 1.99 378

4

LSMC [2, 2, 6] 3.22 7229250

Maximum Influence [2, 1, 7] 3.09 10444

5
LSMC [2, 2, 16] 6.54 23426641

Maximum Influence [2, 3, 15] 6.39 40097214

6
LSMC [10, 10] 4.32 302874000

Maximum Influence [8, 12] 4.04 49838538

even for large problems. It should be noted that for dataset 5,

LSMC outperformed the Maximum Influence Heuristic and so

can potentially be used as a heuristic. However, it also suffers

from poor runtimes on large problems.

V. OPTIMAL NUMBER OF IMPRESSIONS PER STAGE

In the mathematical formulation in Section II we assumed

that the number of impressions per stage ~m was given and

solved for the optimal impression allocations at each stage. So

to obtain the optimal solution we need to evaluate all possible

impression vector allocations as we did in the previous section

for the exact computation of the optimal solution. As we

saw previously, even when the impression vector is given, the

determination of the optimal solution is computationally inten-

sive. In this section we discuss heuristics for the impression

vector determination. Such a heuristic will remove the need to

evaluate all possible impression vectors.

We propose the following heuristic for determining the

number of impressions to use in each stage. Consider a

symmetric graph in which all nodes have the same degree d.

Denote the click probability, for all users, in the first stage

by pK (i.e. a K + 1 stage problem). No matter how the

impressions are placed, the expected number of clicks will be

pKmK since mK impressions are allocated in the first stage.

Each of the successful clicks will cause an increase in the click

probability of all friends of the user who clicked. Note that a

user may have more than one friend who clicked, but this will

be an unlikely case. Consequently, we will assume that users

have at most one friend who clicked. Therefore, the expected

number of users for whom a single friend clicked is given by

pKmKd. Now we need to have mK large enough to increase

the click probability of sufficient friends for the subsequent

stage. However, if mK is too large then there will be some

users with increased click probabilities but these cannot be

given impressions in the subsequent stage because there are not

enough impressions. Therefore we choose mK such that the

2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)

expected number of users with increased probabilities equals

the number of impressions available in the next stage.

pKmKd = mK−1 (7)

Note that, in reality, all nodes do not have the same degree

(i.e. all users do not have the same number of friends) but

we can take d to be the average node degree. In the next

stage we assume that only the users that have increased click

probabilities are considered for impressions. Hence their click

probabilities are now pK + α/d since we assume one friend

has clicked and we are assuming β = 0. However note that,

an impression given to one of these users now only affects

d− 1 friends since one of their friends had clicked. So in the

second stage we have

pK−1mK−1(d− 1) = mK−2 (8)

We can repeat this all the way to the last stage and then use

the fact that the total number of impressions must equal M to

determine the number of impressions in each stage.

For example let us consider the case of K = 3 We have

m2 =
m1

p2d
and m1 =

m0

p1(d− 1)
(9)

Since the total number of impressions is M we have

M = m0+m1+m2 = m0

[

1 +
1

p1(d− 1)
+

1

p2p1d(d− 1)

]

Therefore

m0 =
M

1 + 1
p1(d−1) +

1
p2p1d(d−1)

where p1 = p2 +
α

d
(10)

since we assume that in each stage a single friend of a

user clicks. Note that, when computing the probabilities,

appropriate checks must be made to ensure that the probability

values do not exceed unity. Given m0 we can now use 9 to

determine the impressions for the first two stages.

In Table III, we compare the performance of this impression

vector heuristic with the optimal solution. For each of the

datasets we provide the optimal impression vector and the

optimal value in column 2 while in column 3 we provide

the impression vector obtained by the heuristic together with

the optimal function value that is obtained for this impression

vector. We find that the heuristic impression vector is close

to the optimal one and for the cases where it is not close the

objective function values are comparable (which means that

the objective function value is not sensitive to the impression

vector for these cases).

VI. CONCLUSION AND FUTURE WORK

Advertising in Online Social Networks is a quite lucrative

business; hence algorithms that can provide near optimal

results in near real-time are important. We considered the

revenue optimization model that was introduced in [1] and

developed heuristics that provide good results while not being

too heavily computationally intensive. Due to the time taken

to evaluate large problems we focused on smaller illustrative

TABLE III
PERFORMANCE OF IMPRESSION VECTOR HEURISTIC

Dataset Optimal Vector (value) Heuristic Vector (value)

1 [2, 3] (1.40) [2, 3] (1.40)

2 [2, 2, 1] (1.56) [3, 1, 1] (1.51)

3 [2, 2, 3] (2.03) [2, 2, 3] (2.03)

4 [2, 2, 6] (3.22) [3, 3, 4] (3.14)

5 [2, 2, 16] (6.54) [4, 6, 10] (6.41)

6 [10, 10] (4.32) [1, 19] (4.22)

examples that show the proposed Maximum Influence heuristic

performed quite well and was fast. We also introduced a

heuristic for determining how many impressions should be

used in each stage of the problem. We believe that a combi-

nation of these two heuristics will perform well in real OSNs.

REFERENCES

[1] P. Hosein and T. Lawrence, “Stochastic dynamic programming model
for revenue optimization in social networks,” in Wireless and Mobile

Computing, Networking and Communications (WiMob), 2015 IEEE 11th

International Conference on, Oct 2015, pp. 378–383.
[2] (2014) Facebook doubleclick for publishers (dfp) optimization web-

site. [Online]. Available: https://www.facebook.com/business/a/online-
sales/ad-optimization-measurement

[3] (2013) Iabinternet advertising revenue report. [Online]. Available:
http://www.iab.net/media/file/ IABInternetAdvertisingRevenueRepor-
tHY2013FINALdoc.pdf

[4] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’03. New York, NY, USA: ACM, 2003, pp. 137–146.
[5] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn, “Social influence in social

advertising: Evidence from field experiments,” in Proceedings of the

13th ACM Conference on Electronic Commerce. ACM, 2012, pp. 146–
161.

[6] H. Bao and E. Y. Chang, “Adheat: An influence-based diffusion
model for propagating hints to match ads,” in Proceedings of the

19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: ACM, 2010, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772699

[7] S. Bhagat, A. Goyal, and L. V. Lakshmanan, “Maximizing product
adoption in social networks,” in Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, ser. WSDM
’12. New York, NY, USA: ACM, 2012, pp. 603–612. [Online].
Available: http://doi.acm.org/10.1145/2124295.2124368

[8] J. Hartline, V. Mirrokni, and M. Sundararajan, “Optimal marketing
strategies over social networks,” in Proceedings of the 17th

International Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 189–198. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367524

[9] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, “Online influence
maximization,” in Proc. KDD, Sydney, Australia, Aug. 2015.

[10] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’10. New
York, NY, USA: ACM, 2010, pp. 1029–1038. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835934

[11] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in Data Mining (ICDM), 2012 IEEE

12th International Conference on. IEEE, 2012, pp. 918–923.
[12] A. Erdős, P.; Rényi, “On random graphs. i,” Publicationes Mathemati-

cae, pp. 290–297, 1959.
[13] E. N. Gilbert, “Random graphs,” Ann. Math. Statist.,

vol. 30, no. 4, pp. 1141–1144, 12 1959. [Online]. Available:
http://dx.doi.org/10.1214/aoms/1177706098

[14] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

