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ABSTRACT

In a Smart Grid network, household energy consumption is moni-

tored by the use of residential smart meters. However, these do not

provide data for individual appliance consumption. In this paper

we consider publicly available dis-aggregated electrical energy data

obtained from six homes. Using the apriori algorithm we determine

association rules between appliances so as to understand which

appliances are used in conjunction with others. �is information

can then be used to determine be�er ways to control the on/off

activity of these devices. Our objective was to determine if such

associations can in fact be determined. We conclude that this is

indeed the case as demonstrated by our results. In general, houses

with a large number of appliances generated more association rules

while the accuracy of classifying rules reduced with an increase in

the number of appliances.
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1 INTRODUCTION

Electricity is a form of energy used on a daily basis from small scale

applications at home, to large scale applications in factories. It is pro-

duced in power stations from both renewable and non-renewable

primary sources of energy including fossil fuels, wind, water, solar

and nuclear energy [8]. �is electricity is then distributed to homes

and workplaces for consumption. Although electricity is essential,

studies have shown that commercial, industrial and residential en-

ergy consumption may result in increased emission of greenhouse

gases. Controlling greenhouse gases in the atmosphere is impor-

tant to reduce the impact of climate change [20]. While significant

research has been done on making energy production more effi-

cient, more work needs to be done on improving the efficiency of

its distribution and usage.

�e United States is the world’s second largest energy consumer,

China being the first. In 2014, 18% of the world’s primary energy

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DMCIT ’17, Phuket , �ailand

© 2017 ACM. 978-1-4503-5218-5/17/05. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3089871.3089888

was consumed by the United States amounting to 98 quadrillion

British thermal units (BTU) [23]. In 2015, 20558 trillion BTUs were

consumed by residential end users [22]. �is sector has huge po-

tential for initiating strategic use of electricity as users can easily

monitor energy usage at home. Being energy efficient can benefit

individuals and countries in several ways. It can lead to dynamic

pricing of domestic electricity for customers deciding to use appli-

ances when it is cheaper to use it.

Smart meters are traditionally used to monitor electricity con-

sumption. �ese meters however, only provide the whole home

power consumption. Such data is not really useful to the end user

if an individual were to try to become energy efficient. �e con-

sumer needs knowledge of which appliances contribute the most

to the electricity bill. Once users know where energy is being

wasted, steps can be taken to reduce unnecessary electricity con-

sumption. �is is where energy dis-aggregation is useful. Energy

dis-aggregation is the process of extracting end-use and appliance-

level data from an aggregate orwhole building usage [3]. A common

method for energy dis-aggregation is Non-Intrusive Load Monitor-

ing (NILM). NILM requires one single meter for the house being

monitored and detects changes in current and voltage deducing

the appliances used in that house and their respective energy con-

sumption [26].

1.1 Related Work

Past studies including [10, 11, 14] and [15] focus on the collec-

tion and analysis of residential dis-aggregated energy data sets.

�e methods used to analyze the respective data sets include Dis-

criminate dis-aggregation Sparse Coding (DDSC), Factorial Hidden

Markov Models (FHMM), Marked Hawkes process and time series.

�ese studies develop energy dis-aggregation algorithms to reduce

training requirements and improve its robustness and accuracy. In

another study [18], rule mining is used to compare the strength

of time-based associations to the associations between devices by

means of a JMeasure metric.

1.2 Contributions

�e main difference between this report and past studies is our

use of the apriori algorithm in association rule mining to examine

the occurrence of appliances: both concomitant and single. Such

analysis provides the necessary information to improve on resi-

dential energy conservation. Consumers will now be aware of the

appliances that are used together and the appliances which are on

but not necessarily in use (idling). Our main contribution is the

demonstration that Association Mining can in fact be used to find

association rules with sufficiently high confidence to be useful for

managing home appliances and devices.
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2 DATA ANALYSIS

2.1 �e REDD Data Set

�e publicly available Reference Energy dis-aggregation Dataset

(REDD) was obtained from [12]. �is data was collected to assist

researchers in the field of data mining and machine learning. �e

data was collected from six houses across the greater Boston area

in the United States and consists of low frequency, high frequency

and raw high frequency measurements. �e measurements were

collected by observing and monitoring the homes over a period of

several months. �e exact period of time was not made available

due to reasons of confidentiality. �e data is therefore supervised

information. Hardware and So�ware systems were setup across

each home and these are further explained in [11]. �e total home

energy usage was recorded at a frequency of 15 kHz whereas the

appliance loads were sampled at a rate of 1 Hz.

In this study only the low frequency (appliance) measurements

were analyzed. �e samples were time stamped with UTC time.

�e first two sample channels of each house were the mains, set at

a frequency of once per second, and the remaining channels were

appliance circuits set at a frequency of once every three seconds.

Houses one to six contained 20, 11, 22, 20, 26 and 17 channels

respectively, including the mains.

Appliances that were not on at any time during the period under

study were removed. �e resulting numbers of channels were 18, 11,

22, 19, 21 and 16 for houses one through six respectively. �is study

focuses on the appliances so the two mains for each house were

not included in the analysis. Table 1 provides a list and number of

appliances for each house.

2.2 Association Rule Mining

Association Rule Mining or Association Rule Learning is a tech-

nique in data mining used to discover relationships or associations

among variables [21]. Note that we only consider appliance associ-

ations within each house but do not consider associations across

houses (e.g., whether a dishwasher in house 1 is associated with a

dishwasher in house 2).

Consider a single house and letT denote the set of active devices

at each sampling time so that t ∈ T represents the set of active

appliances at a given sampling point. Let X denote some subset of

appliances and let Y denote another subset. �ese two sets (called

itemsets) are said to be associated if X and Y have one or more

common items. An association rule denoted by X → Y expresses

an if/then relationship between sets X and Y . �e Support of X

with respect toT is defined as the fraction of all instances in which

the items in X are active:

supp{X } ≡
|t ∈ T ;X ⊆ t |

|T |
(1)

�e Confidence value of an association rule {X → Y } represents

how o�en the rule has been found to be true:

conf{X → Y } ≡
supp(X ∪ Y )

supp(X )
(2)

Finally the Li� of an association rule is the ratio of the observed

support to that expected if the sets were independent:

li�{X → Y } ≡
supp(X ∪ Y )

supp(X ) × supp(Y )
(3)

Table 1: List of Appliances for Each House

HouseAppliances Number

1 oven1, oven2, refrigerator, dishwasher, kitchen out-

let1, kitchen outlet2, lighting1, washer-dryer, mi-

crowave, bathroom gfi, electric heat, stove, kitchen

outlet3, kitchen outlet4, lighting2, lighting3

16

2 kitchen outlet1, lighting, stove, microwave, washer-

dryer, kitchen outlet2, refrigerator, dishwasher, dis-

posal

9

3 unknown outlet1, unknown outlet2, lighting1, elec-

tronics, refrigerator, disposal, dishwasher, furnace,

lighting2, unknown outlet3, washer-dryer1, washer-

dryer2, lighting3, microwave, lighting4, smoke

alarm, lighting5, bathroom gfi, kitchen outelt1,

kitchen outlet2

20

4 lighting1, furnace, kitchen outlet1, unknown outlet,

washer-dryer, stove, air conditioning1, air condition-

ing2, miscellaneous, smoke alarm, lighting2, kitchen

outlet2, dishwasher, bathroom gfi1, bathroom gfi1,

lighting3, lighting4

17

5 microwave, unknown outlet1, furnace, unknown out-

let2, washer-dryer1, washer-dryer2, subpanel1, sub-

panel2, electric heat1, electric heat2, lighting1, un-

known outlet3, bathroom gfi, refrigerator, lighting2,

dishwasher, electronics, lighting3, kitchen outlet

19

6 kitchen outlet1, washer-dryer, stove, bathroom

gfi, refrigerator, dishwasher, unknown outlet1, un-

known outlet2, electric heat, kitchen outlet2, light-

ing, air conditioning1, air conditioning2, air condi-

tioning3

14

If X and Y occur independently then the Li� is 1 otherwise it

increases as the correlation increases [4, 5, 13].

�e Apriori algorithm (described in [1, 9, 17]) is used for our

association analysis. �is algorithm determines those itemsets of

appliances that occur frequently. Given these frequent itemsets we

then determine association rules that have high confidence values

(i.e. rules that occur frequently). If association rule X → Y occurs

frequently then we can say (with some degree of confidence) that

whenever items in X are active then items in Y are also active. �is

then tells us the relationship between active devices in a home.

Association Rule Mining was conducted using the Statistical

So�ware R. �e R packages ”arules” and ”arulesViz” were used to

analyze associations between all appliances separately for each of

the six houses [6, 24]. Note that one could also analyze associations

across houses and this may be done in the future. From the dataset

we can determine, for each time sample, the set of devices which

are on since their power consumption would be positive. Given

this information we can form the set T , execute the Apriori algo-

rithm to determine the frequent itemsets and finally generate the

association rules. �e generated rules are then sorted, inspected

and its redundant rules removed. �ese resulting rules are then

displayed graphically.
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2.3 Validation

Sensitivity is defined as the probability that a positive (or signifi-

cant) rule is classified correctly (i.e., positive correctly classified

divided by total positive rules), whereas specificity is the probabil-

ity that a negative (or insignificant) rule is classified incorrectly

(i.e., negative incorrectly classified divided by total negative rules).

Accuracy is the probability that the algorithm classifies both sig-

nificant and insignificant rules correctly (i.e. sum of positive and

negative correct classifications divided by total rules). A Receiver

Operating Characteristic (ROC) curve is a plot of Sensitivity versus

(1 - Specificity). It is used to evaluate the performance of the apriori

algorithm. �e area under the curve (AUC) is used to determine

how well an algorithm classifies the rules. ROC curves with high

AUC values imply that the algorithm is good at classifying the

association rules [19, 25].

To validate the results, the rules generated from the apriori algo-

rithmwere classified using two parameters, support and confidence.

Contingency tables for each of the houses were then constructed.

�e sensitivity, specificity and accuracy values for each house and

for both classifications were calculated and tabulated. Finally, AUC

values were determined by plo�ing ROC curves for each house

using the calculated sensitivity and specificity values.

3 RESULTS

In this section the experimental results together with explanations

are presented. With the given data we can compute energy con-

sumption for the various appliances (energy is the product of power

and the time during which the appliance is on). �e appliances

which consumed the most energy in houses 1 to 6 are refrigerator

(house 1), refrigerator (house 2), electronics, furnace, lighting-3 and

lighting respectively. It was found that house 6 consumed the most

power and house 2 consumed the least. Also house 6 consumed the

most energy but house 4 consumed the least. House 4 consumed

the least energy but not the least power as the average on time of

its appliances was smallest.

We first use sca�er plots to demonstrate the various metrics

for each of the generated rules. Due to space limitations we only

provide this plot for House 3 which was a typical house. �is

plot, provided in Figure 1, contains the confidence value of the

rule on the vertical axis, its support on the horizontal axis and

the shade of the diamond indicates the li� (with lighter colored

rules having higher li� values). It is seen that generally, across

all the houses, the association rules satisfy minimum support and

minimum confidence. Rules which also have both high support and

high confidence are said to be strong [7, 24]. Houses 1, 2, 3, 4, 5 and

6 generated 28, 15, 168, 47, 590 and 39 significant rules respectively.

Next we provide a graph-based visualization of the association

rules. Again, we only provide this for House 3 which has 168 rules.

In this graph, shown in Figure 2, each rule is represented by a circle

with the size of the circle and its color denoting the support and

li� respectively of the rule. Larger circles denote larger support

values while darker circles denote larger li� values. �erefore, the

rule with smallest support and largest li� would be identified as

the smallest and darkest colored circle. Notice that electronics is

apart from the other rules, this suggests that it was used by itself.

It is also seen that this rule has high support and low li�.

Scatter plot for 168 rules
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Figure 1: Significant Association Rules for House 3

Figure 2: Graph-based Visualization of Rules for House 3

�e largest association for each house was determined from the

R output and tabulated in Table 2. It is clear that house 5, with

10 appliances working together, has the largest combination of

associations among all the houses. House 3 has the second largest

combination of associations, with 6 appliances working together.
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Table 2: Largest Association for Each House

HouseAssociation

1 refrigerator, bathroom gfi, kitchen outlet3 → lighting 1

2 stove, kitchen outlet 2, refrigerator → washer, dryer

3 dishwasher, furnace, microwave, smoke alarm, kitchen

outlet1→ lighting 5

4 unknown outlet, stove, miscellaneous, bathroom gfi1 →

bathroom gfi 2

5 microwave, unknown outlet1, subpanel 1, lighting1,

bathroom gfi, refrigerator, electronics, lighting3, kitchen

outlet→ furnace

6 kitchen outlet1, refrigerator, kitchen outlet2 → stove

Table 3: Sensitivity, Specificity and Accuracy for Support

House Sensitivity Specificity Accuracy

1 0.2857 0.9822 0.9727

2 0.3333 0.9410 0.9125

3 0.0952 0.9905 0.9676

4 0.1702 0.9285 0.9699

5 0.2322 0.7672 0.7586

6 0.2051 0.9933 0.9892

Table 4: Sensitivity, Specificity and Accuracy for Confidence

House Sensitivity Specificity Accuracy

1 0.6429 0.9718 0.9673

2 0.7333 0.9016 0.8938

3 0.4107 0.9654 0.9512

4 0.7234 0.9641 0.9603

5 0.2763 0.7224 0.7513

6 0.6154 0.9860 0.9841

Note that some of these associations may seem obvious but in

more complicated scenarios this may not be the case. Furthermore,

association rules may change as the seasons change and hence

having an automated method for determining these associations

can be useful. To summarize our findings, house 5 contains 19

appliances and generates 590 significant rules. House 3 contains 20

appliances and generates 168 significant rules. �e other houses,

which contain fewer appliances, generate a smaller number of

association rules. �e combination of associations is largest for

house 5 followed by house 3. As one would expect, houses with a

larger number of appliances generate more association rules and

have a larger combination of associations.

3.1 Validation

�e apriori algorithm was chosen since it is fast. It has also out-

performed other algorithms such as AIS, SETM and AprioriTid as

explained in [2]. Table 3 provides the values for sensitivity, speci-

ficity and accuracy for rule Support while Table 4 provides them

for rule Confidence. Figure 3 shows the ROC curves for house 3

and Table 5 shows the area under the ROC curves for each house.
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Figure 3: ROC Curves for Rule Mining Algorithms

Table 5: AUC for Rule Mining Algorithms

House Apriori AprioriTid

1 0.8057 0.4978

2 0.8122 0.4836

3 0.6877 0.4958

4 0.8209 0.4919

5 0.5000 0.4996

6 0.8001 0.4979

In classification by support and confidence, the sensitivity values

were generally low and the specificity values were high. A high

specificity measure means that a large number of false negative

rules were generated. It is beneficial to have a large number of

false negatives in mining frequent itemsets as it greatly reduces the

quantity of significant rules generated by the algorithm thereby

reducing memory consumption. �e number of false negatives

however, should be controlled as this could affect the sensitivity

of the algorithm. �e low sensitivity values suggest that a small

fraction of significant rules were classified as truly positive. �is

may result from the large number of rules generated by the data set.

To address this we suggest the use of the AprioriHybrid algorithm

or FP-growth as an alternative approach in association rule mining

[16] since they are be�er suited for large data sets.

�e accuracy for houses 1, 2, 3, 4 and 6 are high. �is suggests

that the algorithm has a high probability of predicting rules cor-

rectly. Also, the algorithm is excellent at classifying rules for houses

1, 2, 4 and 6 since their respective AUC values are greater than 0.8.

Classification of rules in houses 3 and 5 are acceptable but the areas

under their ROC are not as high (between 0.5 and 0.7). �ese two

houses have a large number of appliances. To verify that the Apriori
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algorithm outperforms other algorithms, we applied the Apriori-

Tid algorithm to the data and found its respective AUC values by

plo�ing ROC curves. Table 5 and Figure 3 show that this is indeed

the case as the AprioriTid classified rules poorly with AUC values

less than 0.5 and its ROC curve is lower than that of the Apriori.

�is study was conducted without knowledge of whether any of

the houses contained energy efficient gadgets and without knowl-

edge of the time period over which the data was collected. If this

period was known, then conclusions would be be�er with regard to

energy consumption in a specified season. Also, if the hour of the

day the appliances were used in each house were known, it would

then be possible to graph the usage of power throughout the day

and determine the peak hours that power is used on a daily basis.

Such data is useful as the user will be aware of his/her behavioral

pa�erns thereby resulting in a change of their regular habits.

4 CONCLUSIONS AND FUTUREWORK

�e objective of this paper was to determine if Association Mining

can assist in energy savings in the home. However, because the

number of houses for which samples were made available was small,

we cannot make general statements. What we have demonstrated

is that this technique can be used to identify which appliances are

used together. One can then use this information to make changes

that may help to conserve energy. For example, if we find that

typically one turns on two or more lights whenever they are in a

room then it is very likely that they o�en forget to switch off one

of these lights when leaving the room. Hence having a common

switch for all of the concerned lights will help to alleviate this

problem leading to reduced energy consumption. One can come

up with various other scenarios like this and we believe that the

approach provided in this paper will assist with such solutions.

Furthermore we believe that the approach here can be used in an

adaptive system. For example, in a smart home in which all lights

and appliances can be centrally controlled one can do the following.

Suppose we determine that the association rule X → Y has high

confidence then once appliances in X are turned on, the appliances

in Y can be automatically turned on. Again if we consider the

case of a room with several lights and there is a close association

between the activation of the first light and the other lights in the

room then with a centrally controlled system the other lights can

be automatically turned on when the first one is turned on. Such a

system will continuously learn over time and adapt as behaviors

or the environment changes. Of course, this will require that the

system occasionally forget an association rule in order to determine

if the rule is still valid (e.g, the person who prefers all lights on no

longer lives there and the new occupant prefers one light).

One thing we did not do is determine association rules across

houses. We believe that such an analysis may also lead to some

interesting insights. For example, suppose we find that several

people use their washing machines at the same time then this would

increase the load peak and generally high peaks are undesirable in

a power grid since it may require activation of additional power

sources. Hence knowledge of this washing machine association

rule can help in approaches such as dynamic (load based) pricing

so that people avoid using their washing machine during this peak

hour. One can also include additional non-energy informationwhen

determining rules. For example, given weather information, one

can determine association rules with factors such as temperature.

�ese will be addressed in future work.
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