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Abstract

Recently there has been significant research on

power generation, distribution and transmission

efficiency especially in the case of renewable

resources. The main objective is reduction of

energy losses and this requires improvements

on data acquisition and analysis. In this paper

we address these concerns by using consumers’

electrical smart meter readings to estimate net-

work loading and this information can then be

used for better capacity planning. We com-

pare Deep Neural Network (DNN) methods with

traditional methods for load forecasting. Our

results indicate that DNN methods outperform

most traditional methods. This comes at the cost

of additional computational complexity but this

can be addressed with the use of cloud resources.

We also illustrate how these results can be used

to better support dynamic pricing.

1. Introduction

Currently, most of the energy produced worldwide uses

coal or natural gas. However, much of this energy is

wasted. In the United States of America, approximately

58% of energy produced is wasted (Battaglia, 2013). Fur-

thermore, 40% of this wasted energy is due to industrial

and residential buildings. By reducing energy wastage

in the electric power industry, we reduce damage to the

environment and reduce the dependence on fossil fuels.

Short-term load forecasting (STLF) (i.e., one hour to a

few weeks) can assist since, by predicting load, one can

do more precise planning, supply estimation and price

determination. This leads to decreased operating costs,

increased profits and a more reliable electricity supply for

the customer. Over the past decades of research in STLF

there have been numerous models proposed to solve this
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problem. These models have been classified into classical

approaches like moving average (de Andrade & da Silva,

2009) and regression models (Hong et al., 2011), as well as

machine learning based techniques, regression trees (Mori

& Kosemura, 2001), support vector machines (Niu et al.,

2006) and Artificial Neural Networks (Lee et al., 1992).

In recent years, many deep learning methods have been

shown to achieve state-of-the-art performance in various

areas such as speech recognition (Hinton et al., 2012), com-

puter vision (Krizhevsky et al., 2012) and natural language

processing (Collobert & Weston, 2008). This promise has

not been demonstrated in other areas of computer science

due to a lack of thorough research. Deep learning methods

are representation-learning methods with multiple levels

of representation obtained by composing simple but non-

linear modules that each transform the representation at one

level (starting with the raw input) into a representation at

a higher, slightly more abstract level (LeCun et al., 2015).

With the composition of enough such transformations, very

complex functions can be learned.

In this paper, we compare deep learning and traditional

methods when applied to our STLF problem and we also

provide a comprehensive analysis of numerous deep learn-

ing models. We then show how these methods can be

used to assist in the pricing of electricity which can lead

to less energy wastage. To the best of our knowledge,

there is little work in such comparisons for power usage

in an electrical grid. The data we use is based on one year

of smart meter data collected from residential customers.

We apply each of the deep and traditional algorithms to

the collected data while also noting the corresponding

computational runtimes. Due to differences in electricity

usage between the week and the weekend, we then split the

data into two new datasets: weekends and weekly data. The

algorithms are applied to these new datasets and the results

are analyzed. The results show that the deep architectures

are superior to the traditional methods by having the lowest

error rate, but they do have the longest run-time. Due to

space limitations we do not provide details of the traditional

approaches but do provide references.
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Table 1. Baseline algorithms

Algorithm MAPE MPE Time (s)

WMA 9.51 -1.96 100

MLR 24.25 -1.47 1

MQR 12.91 -7.63 7

RT 7.23 -1.71 15

SVR 13.65 3.16 19

2. Analysis

2.1. Data Description

Our dataset consists of 8592 samples of 18 features that

were collected from several households. The dataset was

broken into 3 parts for training, validation and testing of

sizes 65%, 15%, 20% respectively. The readings were

recorded at hourly intervals throughout the year. Some of

the features were electrical load readings for the previous

hour, the previous two hours, the previous three hours, the

previous day same hour, the previous day previous hour,

the previous day previous two hours, the previous 2 days

same hour, the previous 2 days previous hour, the previous

2 days previous two hours, the previous week same hour,

the average of the past 24 hours and the average of the

past 7 days. The rest of the features (which do not contain

electrical load readings) are the day of the week, hour of

the day, if it is a weekend, if it is a holiday, temperature

and humidity. These features were selected as they are

typically used for STLF. In addition, the total electrical load

does not change significantly throughout the year since

the households are located in a tropical country where the

temperature remains fairly constant throughout the year.

2.2. Comparison Method

As a preprocessing step, the data is cleaned and scaled

to zero mean and unit variance. All traditional methods

use cross-validation to determine appropriate values for

the hyper-parameters. A random grid search was used

to determine the hyper-parameters for the deep learning

methods.

Several baseline algorithms were chosen. They include

the Weighted Moving Average (WMA) where yt+1 =

αyi + βyi−167 with α = 0.05 and β = 0.95, Multiple

Linear Regression (MLR) and quadratic regression (MQR),

Regression Tree (RT) with the minimum number of branch

nodes being 8, Support Vector Regression (SVR) with a

linear kernel and Multilayer Perception (MLP), with the

number of hidden neurons being 100.

For our Deep Neural Network methods we used Deep

Neural Network without pretraining (DNN-W), DNN with

pretraining using Stacked Autoencoders (DNN-SA) (Shin

Table 2. DNN algorithms (subscript denotes number of layers)

Algorithm 200 Epocs 400 Epocs

MAPE MPE Time(s) MAPE MPE Time(s)

MLP 5.62 -5.62 14 4.55 -4.54 25
DNN-W3 2.64 1.61 30 2.50 1.98 56
DNN-W4 5.71 -5.36 37 5.48 -5.32 72
DNN-W5 4.40 1.79 38 5.98 5.45 69

DNN-SA3 2.97 1.23 23 2.01 0.74 25
DNN-SA4 2.88 0.23 29 2.37 0.79 42
DNN-SA5 2.92 0.91 37 1.84 0.53 49

RNN 5.23 0.89 174 5.13 -0.37 359
RNN-LSTM 5.36 -1.26 880 5.27 -1.17 1528
CNN-LSTM 5.74 -3.85 1029 6.43 -5.96 1912

CNN 3.15 -3.53 799 4.60 4.23 1188

et al., 2011), Recurrent Neural Networks (RNN) (Hermans

& Schrauwen, 2013), RNNs and Long Short Term Memory

(RRN-LSTM) (Gers et al., 2001), Convolutional Neural

Networks (CNN) (Siripurapu, 2015) and CNNs and Long

Short Term Memory (CNN-LSTM)] (Sainath et al., 2015)

To evaluate the goodness of fit of these algorithms we use

the Mean Absolute Percentage Error (MAPE) defined as:

MAPE =
100

n

n∑

t=1

|yt − ŷt|

yt
(1)

where n is the number of data points, t is the particular time

step, yt is the target or actual value and ŷt is the predicted

value.

In order to determine the cost of the prediction errors (i.e.

whether the prediction is above or below the actual value)

the Mean Percentage Error (MPE) is used, which is defined

as:

MPE =
100

n

n∑

t=1

yt − ŷt

yt
(2)

2.3. Numerical Results

We first look at the baseline methods, (with the exception of

MLP) in Table 1. From the table we see that MLR performs

the worst, with a MAPE of 24.25%, which would indicate

that the problem is not linear (see Figure 1). However,

the RT algorithm outperforms the rest of the methods by

a noticeable margin. This shows that the problem can be

split into some discrete segments which would accurately

forecast the load. This can be confirmed by looking at the

load in Figure 1 where it is clear that, depending on the time

of day, there is significant overlap of the value of the load

between days. Thus, having a node in the RT determining

the time of the day would significantly improve accuracy.

The run-time for these algorithms was quite short with

WMA taking the longest due to the cross-validation step

where we determined all possible coefficients in steps of
2
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Table 3. Daily MAPE Values

Algorithm Sun Mon Tue Wed Thu Fri Sat

WMA 5.71 10.05 8.87 10.24 10.74 10.37 10.67
MLR 65.46 27.61 12.55 11.39 9.01 9.38 35.59
MQR 1.17 11.92 9.88 14.24 14.11 17.11 13.24

RT 7.45 5.99 7.63 7.37 5.98 7.26 8.87
SVR 20.70 12.96 10.73 11.53 11.63 10.90 17.40
MLP 5.18 4.62 4.43 4.27 4.31 4.70 4.34

DNN-W3 2.95 1.88 2.12 2.49 2.54 2.46 3.12
DNN-W4 6.67 5.45 5.25 4.88 4.61 5.65 5.83
DNN-W5 7.23 5.53 5.56 6.14 6.13 5.81 5.48

DNN-SA3 2.29 1.84 1.76 1.97 1.87 2.03 2.35
DNN-SA4 2.67 2.19 2.00 2.14 2.27 2.55 2.82
DNN-SA5 2.28 1.47 1.63 1.93 1.60 1.76 2.22

RNN 5.38 5.30 4.41 5.14 5.11 5.35 5.45
RNN-LSTM 4.25 4.34 4.96 4.55 5.64 6.97 6.13
CNN-LSTM 7.79 6.86 6.04 6.05 5.65 6.44 6.21

CNN 6.39 4.20 4.27 3.32 3.87 4.18 5.03

0.05.

Due to the typically long running time of DNN architec-

tures, the algorithms were restricted to 200 and 400 epocs.

From Table 2, there is a clear difference when looking at

the 200 epocs and the 400 epocs MAPE columns, as most

of the algorithms have a lower MAPE after running for 400

epocs when compared with 200 epocs. This is especially

true for the DNN-SA3 which saw significant drops in the

MAPE. The MLP did not perform the worst in both epocs

but it was always in the lower half of accuracy. This

indicates that the shallow network might not be finding

the patterns or structure of the data as quickly as the DNN

architectures. However, it outperformed RT in both the 200

and 400 epocs. This alludes to the fact that the hidden layer

is helping to capture some of the underlying dynamics that

a RT cannot.

Looking at the 200 epocs column, we see that DNN-W3

performs the best with a MAPE of 2.64%. On the other

hand, the most stable architecture is the DNN-SA with a

MAPE consistently less than 3%. This robustness is shown

when the epocs are increased to 400 where the DNN-SA

architecture outperforms all the other methods (both the

baseline and deep methods). The pretraining certainly

gave these methods a boost over the other methods as it

guides the learning towards basins of attraction of minima

that support better generalization from the training data

set (Erhan et al., 2010). RNNs, and to an extent LSTM,

have an internal state which gives it the ability to exhibit

dynamic temporal behavior. However, they require a

much longer time to compute which is evident in Table 2

since these methods had trouble mapping those underlying

dynamics of the data in such a small number of epocs.

CNNs do not maintain internal state, however with load

forecasting data, one can expect a fair amount of auto-

correlation that requires memory. This could explain their

(a) Weekday Electrical Usage

(b) Weekend Electrical Usage

Figure 1. Electrical Profiles

somewhat low but unstable MAPE for 200 and 400 epocs.

Taking both tables into consideration, most of the DNN

architectures vastly outperform the traditional approaches,

but DNNs require significantly more time to run and thus

there is a trade-off. For STLF, which is a very dynamic

environment, one cannot wait for a new model to complete

its training stage. Hence, this is another reason we limited

the number of epocs to 200 and 400. Table 2 shows

that limiting the epocs did not adversely affect many of

the DNN architectures as most were able to surpass the

accuracy of the traditional methods (some by a lot). When

selecting a model, one would have to determine if the

length of time to run the model is worth the trade-off

between accuracy and runtime.

2.4. Daily Analysis

We know that people have different electrical usage pat-

terns on weekdays when compared to weekends. This dif-

ference can be seen in Figure 1 which illustrates usage for a

sample home. This household uses more energy during the

weekdays than on weekends. There are electrical profiles

that may be opposite, i.e., where the weekend electrical

load is more. Whatever the scenario, there are usually

different profiles for weekdays and weekends.

To see how our models handle weekdays and weekends,

we calculated the average MAPE for each day of the

week in the test set (the 400 epoc models was used for

the DNNs calculations). The average for each day of

the week is tabulated in Table 3. From the table, it is
3
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clear that most of the DNN algorithms have their lowest

MAPE during the week. This is indicative that the patterns

for weekdays are similar and as a result have more data.

By having more data, DNNs are better able to capture

the underlying structure of the data and thus are able to

predict the electrical load with greater accuracy. Weekend

predictions have a higher MAPE since DNNs require a lot

of data to perform accurate predictions and for weekends

this data is limited. The WMA and MQR seem to have

their best day on Sunday, but have a very poor MAPE

for the rest of the days. This indicates that the models

have an internal bias towards Sunday and as a result fail

to accurately predict the values for other days. It is clear,

again, that DNNs outperform the traditional methods.

2.5. Mean Percentage Error

In this particular domain, an electricity provider will also

be interested in changes of electrical load, as opposed to

absolute error, in order to adjust generation accordingly,

mostly because starting up additional plants takes time.

This is why the Mean Percentage Error (MPE) was used.

The MPE would tell that a model with a positive value

”under-predicts” the load while a negative value ”over-

predicts” the actual value and they can then adjust their

operations accordingly.

Many of the traditional methods had predicted more elec-

trical load than the actual load, including MLP. However,

most of the DNNs have under-predicted the load value.

Looking at the best in Table 2, DNN-SAs MPE values

(for 400 epocs), they are all under 1% and positive, which

indicates that it under-predicts the value. However, one

should not use the MPE alone. An example is RNNs

which have a low positive MPE, however it’s MAPE in

both epocs is around 5%. This indicates that RNN had

a slightly larger sum of values that ”under-predicts” than

”over-predicts”, but its overall accuracy is not as good as

other deep architectures.

2.6. Applications to Energy Efficiency

Using the results from STLF (MAPE and MPE), a com-

pany can now accurately predict upcoming load. This

would mean that a power generating company can now

produce energy at a much more precise amount rather than

producing excess energy that would be wasted. Since

most of these companies use fossil fuels which are non-

renewable sources of energy, we would be conserving them

as well as reducing levels of carbon dioxide released into

the atmosphere and the toxic byproducts of fossil fuels.

Another benefit of accurate load forecasting is that of

dynamic pricing. Many residential customers pay a fixed

rate per kilowatt. Dynamic pricing is an approach that

allows the cost of electricity to be based on how expensive

this electricity is to produce at a given time. The production

cost is based on many factors, which in this paper, is

characterized by the algorithms for STLF. By having a

precise forecast of electrical load, companies now have the

ability to determine trends, especially at peak times.

An example of this would be in the summer months when

many people may want to turn on their air conditioners and

thus electricity now becomes expensive to produce as the

company could have to start up additional power generating

plants to account for this load. If the algorithms predict that

there would be this increase in electrical load around the

summer months, this would be reflected in the higher price

that consumers would need to pay. As a result, most people

would not want to keep their air conditioner on all the time

(as per usual) but use it only when necessary. Taking this

example and adding on washing machines, lights and other

appliances, we can see the immense decrease in energy that

can be achieved on the consumer side.

3. Related Work

The area of short-term load forecasting (STLF) has been

studied for many decades but deep learning has only

recently seen a surge of research into its applications.

Significant research has been focused on Recurrent Neu-

ral Networks (RNNs). In the thesis by (Mishra, 2008),

RNNs was used to compare other methods for STLF.

These methods included modifications of MLP by training

with algorithms like Particle Swarm Optimization, Genetic

Algorithms and Artificial Immune Systems. Two other

notable papers that attempt to apply DNN for STLF are

(Busseti et al., 2012) and (Connor et al., 1992). In

(Busseti et al., 2012), they compare Deep Feedfoward

Neural Networks, RNNs and kernelized regression. In the

paper by (Connor et al., 1992) a RNN is used for fore-

casting loads and the result is compared to a Feedfoward

Neural Network. However, a thorough comparison of

various DNN architectures is lacking and any applications

to dynamic pricing or energy efficiency is absent.

4. Conclusion

In this paper, we focused on energy wastage in the electrical

grid. To achieve this, we first needed to have an accurate

algorithm for STLF. With the advent of many deep learning

algorithms, we compared the accuracy of a number of deep

learning methods and traditional methods. The results indi-

cate that most DNN architectures achieve greater accuracy

than traditional methods even when the data is split into

weekdays and weekends. However such algorithms have

longer runtimes. We also discussed how these algorithms

can have a significant impact in conserving energy at both

the producer and consumer levels.
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