
On the Multi-Stage Influence Maximization Problem

Inzamam Rahaman and Patrick Hosein
Department of Computer Science

The University of the West Indies

St. Augustine, Trinidad

inzamam@lab.tt, patrick.hosein@sta.uwi.edu

Abstract—The influence maximization problem turns up in
many online social networks (OSN) in which each participant can
potentially influence the decisions made by others in the network.
Relationships can be friendships, family relationships or even
professional relationships. Such influences can be used to achieve
some objective and the influence maximization problem attempts
to make decisions so as to maximize the effect of these influences.
Past work focused on a static problem whereby one tries to
identify the participants who are the most influential. Recently,
a multi-stage version of the problem was proposed in which
outcomes of influence attempts are observed before additional
participants are chosen. For example, in online advertising, one
can provide an impression to a particular subject and if that
subject clicks on the impression, then their friends are informed
in the hope that this information will increase the chances
that they also click on the impression and eventually purchase
the product. This problem is computationally intensive; in this
paper we investigate various optimization methods for finding
its solution that yield close to optimal results while taking less
computation time. These include greedy and particle swarm
optimization algorithms.

Index Terms—Online Social Networks, Dynamic Program-
ming, Influence Maximization, Particle Swarm Optimization

I. INTRODUCTION

With the rapid growth of the Internet and the reduction in

the cost of the devices used to access it (i.e., smart phones,

tablets, etc.) more people are going online to keep in touch

with friends, family and colleagues. One particular application

that is quite popular is Online Social Networking (OSN) such

as Facebook [1]. This trend has lead to companies allocating

an increasingly greater portion of their advertising budget

to providing advertisements on these OSNs [2]. In addition,

many social experiments are now possible because one can

more easily collect and analyze data. In such networks, each

participant is related in some way to a subset of the other

participants. They may be friends, relatives, office colleagues

or even professional acquaintances. Therefore one participant

may be able to influence others on matters such as product

purchases, services and politics. If one were interested in

disseminating information (e.g., about a product) then one

can more efficiently do so by first convincing an influential

person of the product’s value and then have the person

influence others. This Influence Maximization problem has

been well studied. In [3] a multi-stage version of this problem

was introduced and this further increases the computational

complexity of the problem.

If we consider an advertising campaign, a company pays

for a given number of impressions for its advertisements to be

placed on the OSN. These impressions are placed in stages.

In each stage, a subset of the impressions is allocated and the

outcomes of these allocations (whether or not the user clicked

on the impression) are observed before allocations are made in

the subsequent stage. The decision of each member given an

impression is made available to the member’s friends so that

they can take that information into account if subsequently

provided with an impression. Typically, if one’s friend clicked

an impression then one is more likely to also click; hence

the probability of clicking increases accordingly. The objective

is therefore to place impressions in each stage such that the

total number of clicks is maximized. Note that, in addition

to making impression allocations in each stage, one must also

determine how many impressions should be used in each stage.

The number of clicks reflects the number of users who may

eventually purchase the product and hence the revenue derived

by the company. In this paper we follow the formulation of

the problem as presented in [3] although, as we mentioned

previously, this is just one example of influence maximization.

In the next section we provide the mathematical model and

then we describe different optimization methods that can be

used to solve it.

A. Related Work and Contributions

This paper is based on the model proposed by Hosein and

Lawrence [3]. In their model they considered a multi-stage

deployment. Prior work in this area considered the problem

of influence maximization [4], [5], [6], [7], [8], which can be

considered as a special case of the formulation in [3].

One difficulty in these influence models as well as the model

in [3] is the determination of the influence probabilities be-

tween parties. In other words, how much are we affected by the

actions of our friends. In the paper by Lei et. al. [9] feedback

is used to update influence information. Several heuristics have

also been developed for the influence maximization model

such as Prefix Excluding Maximum Influence Path [10] and

Influence Ranking and Influence Estimation [11].

The major contributions of this paper are the proposed

optimization methods and a comparison of these methods.

We use a modified version of the cascade model [12] for

the influence probability and describe how we determined

the relevant parameters for the model. In the next section

we provide the mathematical model that is used, followed978-1-5090-5105-2/16/$31.00 c©2016 IEEE

by details of the optimization methods and finally numerical

results including some parameter sensitivity analyses.

II. MATHEMATICAL MODEL

An OSN can be represented as a graph consisting of a set of

nodes, denoted by the set V , and a set of edges denoted by the

set E, where E ⊆ V ×V . The nodes represent OSN members

and the edges represent a friendship relationship between a

pair of members. Friendships in OSNs are reciprocal and so

the graph representing an OSN is undirected. We shall denote

the number of users in the OSN by N and hence N = |V |. The

set of friends of user i will be denoted by Fi. We first describe

the influence probability model that is used. This determines

how one member’s decision affects their friends’ decisions.

We then describe the model used to determine the impression

allocation strategy that maximizes the expected number of

clicks.

Impressions are allocated in batches at the start of a stage.

There is a set interval between stages in which a member’s

response to an impression is recorded. The total number of

impressions is denoted by M and the number of stages by K.

We must determine to whom impressions should be allocated

and in which stage the allocation to that member should be

made. Note that the optimization problem must be re-solved

in each stage since the outcomes of the previous stage should

be taken into account. This problem was formulated as a

Stochastic Dynamic Programming Problem in [3]. The optimal

solution can be obtained but that requires an exhaustive

search. In this paper we provide a different formulation of

the problem.

A. Influence Probability

In the model in [3], friendships are taken as exerting

influence (positive or negative) on a user’s probability of

clicking an impression. Suppose that i and j are friends.

If i clicks in a previous stage, then the probability that j

clicks in the present stage should increase. Likewise, if i

does not click when given an impression in a prior stage

then the probability of j clicking in the present stage should

decrease. All friendships are assumed to have the same degree

of influence and so the same influence probability function is

used for all pairs. Note that a member’s probability of clicking

is related to the number of their friends who have clicked (or

not clicked) in the past.

The papers [13], [14] and [12] focus on two main influence

models, the Linear Threshold (LT) Model and the Independent

Cascade (IC) Model. In the LT model, whether a participant

clicks or not depends on the subset of friends who have already

clicked. The joint influence probability of the set of friends

who have clicked is determined and if this exceeds some

threshold then we assume the member also clicks. In the IC

model each friend of a member independently influences the

member with some given probability. The joint probability is

then used as the probability of clicking for the member.

We follow the Independent Cascade model but with two

modifications from the model provided in [13]. Firstly, in the

multi-stage case the influence probability in the first stage (i.e.

no friends have yet clicked) must be non-zero. Therefore we

assume that the click probabilities of all users in the first stage

is p0. Secondly, we use the fact that a person who has a lot of

friends in the social network will typically be influenced less

by any one of them than a user with a few (close) friends.

Therefore we assume that the probability that an a person

is influenced by someone who has clicked decreases with

the number of friends of the person. Finally let z denote all

friends who have previously clicked and let F denote the total

number of friends. We use the following click probability for

the member:

p = 1− (1− p0)
(

1−
α

F

)z

(1)

The factor 0 ≤ α ≤ F determines the degree of influence in

the particular OSN. The choice of p0 depends on the initial

interest of the product to the member. We use p0 = 0.05 in our

numerical results which indicates that a member is interested

in one out of twenty products without any influences. The

parameter α depends on how many people it takes before we

are almost convinced that we should click on an impression.

We did an informal survey and determined that a suitable value

for this was α = 10.

B. Impression Allocation Space

We assume that there are K stages which are indexed by

k. Let xik denote the allocation vector whereby xik = 1
if member i is allocated an impression in stage k and 0

otherwise. Note that there is a finite number of possible

allocations. Each user can be allocated an impression at most

once and the total number of allocations over all stages must

equal M . We can compute the number of possible allocations

as follows. The number of possible allocation of impressions

to members is simply N choose M . However the allocation

to a member can be made in any of the K stages and there

are KM ways to do this. Of course we need to remove the

cases in which no allocations are made in a stage but since

we typically have K << M then the number of those cases is

insignificant. Therefore the number of allocations that must be

evaluated is given by
(

N
M

)

KM which can be extremely large.

Instead of evaluating all possible allocations we will instead

use a greedy algorithm that starts from a single impression

allocation and sequentially adds impressions to the user/stage

pair that provides the largest increase in the objective function

value.

C. Objective Function Evaluation

For each of these allocations we must evaluate the expected

number of clicks. For a given allocation, the expected number

of clicks is the sum over all members of the expected number

of clicks of each member. The expected number of clicks of

a member is the probability of clicking, when assigned an

impression, times 1 and hence we simply need to compute the

click probability of each user and take the sum. However, these

probabilities vary based on what allocations were previously

made. Let pik denote the probability of clicking of user i in

stage k given some feasible allocation X. If no impression was

given to the user in stage k then this probability is simply 0.

Note that in stage 1 we have pi1 = p0 for all users i since

z = 0 in 1. We now compute pik, if an impression is given

in stage k, in terms of probabilities in earlier stages. Consider

user i and let Ci denote the subset of their friends who have

been given impressions in prior stages. For simplicity, for each

friend j ∈ Ci define

qj =

k−1
∑

k=1

xjkpjk.

This simply means that once an impression is provided to

a user then the probability that they clicked is the clicking

probability of the user in the stage in which the impression

was given. Let V denote the set of all vectors of size |Ci| such

that each member is either 0 or 1.
Therefore V represents all possible outcomes of allocations

made to member i’s friends in previous stages. We can then

compute the clicking probability of user i as

pik =
∑

~v∈V

P (~v)

|Ci|
∏

j=1

{v[j]qj + (1− v[j])(1− qj)} (2)

where we define

P (~v) = 1− (1− p0)

(

1−
α

Fi

)

∑
i
vi

(3)

and where Fi is the total number of friends of user i. Once

we compute all click probabilities then the resulting objective

function value is simply given by

J(X) =

K
∑

k=1

N
∑

i=1

xikpik (4)

D. Optimization Problem

The optimization problem can now be stated as finding the

allocation vector that provides the largest expected number of

clicks and hence we have:

max
X

J(X) (5)

s.t.

K
∑

k=1

xik ≤ 1 ∀i and

K
∑

k=1

N
∑

i=1

xik = M

with xik ∈ {0, 1} ∀i, k

The first constraint is due to the fact that at most one

impression can be allocated to a user. The second constraint is

due to the fact that the total number of allocated impressions

is M . Finally this is an integer programming problem since

an impression can either be allocated or not allocated.
One can therefore find the optimal solution by evaluating

J(X) for all feasible values of X and choosing the allocation

with the highest objective function value. Unfortunately (a)

the number of possible allocations is very large and (b) the

evaluation of the expectation for each allocation is compu-

tationally intensive. In the next section we describe ways to

address these two issues.

III. OPTIMIZATION METHODS

A. Greedy Algorithm (GA)

We first provide an approximation to the computation of

the expected number of clicks for a given allocation and then

use this to do a greedy allocation of impressions. Consider

some initial feasible allocation X. In the first stage the click

probabilities, p0, are known and so we use these as our

approximations in the first stage. Let us assume that the

approximate click probabilities are known for stages 1 to k

and determine the click probability approximations for stage

k+1. Consider some user i and let Ci denote the set of friends

who have so far been given impressions. Let p̂j denote the

approximate click probability of friend j ∈ Ci in the stage in

which the impression was given. Therefore the expected total

number of clicks performed by these friends is given by

Ti =
∑

j∈Ci

p̂j (6)

We use this number to compute the approximate click prob-

ability of user i in the present stage (if given an impression)

by

p̂ik+1 = 1− (1− p0)

(

1−
α

Fi

)Ti

. (7)

Note that this computation can be done quite rapidly. We

evaluated this approximation and found that it generally

overestimates the true value (as one would expect since the

influence probability function is concave). However, in terms

of comparing two allocations it performs quite well. In other

words if one allocation is better than another then this relation

also holds, in general, for the approximation.

For a given allocation X, let Ĵ(X) denote the above approx-

imation to the expected number of clicks for that allocation.

For any user j with no impression in this allocation let X+j

be used to denote the corresponding allocation in which an

impression is also given to j. Therefore the expected value

increase due to this allocation is given by

∆j = Ĵ(X+j)− Ĵ(X). (8)

Note that ∆j consists of two components, one component

is the click probability of j and the second component is

the effect on j’s friends in later stages if j were to click.

Furthermore, the former component increases with stages (i.e.,

as members click then this increases the clicking probabilities

in later stages) while the latter component decreases with

number of stages (i.e., as the number of stages left decreases,

the future influence a click has will also decrease).

We use the following greedy approach. We assign the first

impression by choosing the user who, if given an impression

in the first stage, has the most influence. To measure influence

in the first stage, we use Betweenness Centrality [15]. Assume

we have already made k impression allocations. Given these

allocations, in each stage we compute for each member

(without an impression) their click probability (if given an

impression). In each stage we normalize (over all members)

the click probabilities so that the average is the same as

that in the first stage. This is done to compensate for the

second component mentioned above. Having done this, we

find the member and stage with the largest click probability

and allocate an impression to that member in that stage. This

is repeated until all M impressions are assigned.

B. Particle Swarm Optimization (PSO)

Initially developed by Kennedy and Eberhart [16], Parti-

cle Swarm Optimization (PSO) is a stochastic optimization

method inspired by the swarm behaviors exhibited by birds

and fish. In PSO, a fixed population of points in the search

space are encoded as particles whose movement through the

search space is influenced by both the flocking behavior of

its peers and its own history of behavior. Initially, the particle

represents a random point in the search space. From this initial

point, the movement of a particle through the search space

is influenced by a velocity that can be used to update the

particle’s position to a new position in the search space. To

derive its velocity in a particular iteration, a particle must be

cognizant of three facts: its velocity in previous iterations, its

best position in the past, and the optimal solution among its

peers. If U i
j represents the velocity of the jth particle in the

ith iteration, dj is the jth particle, prev bestj is the previous

best position of the jth particle, global best is the best particle

thus far, c1, c2, ω ∈ [0, 1] are constants, and r1, r2 ∈ [0, 1] are

randomly generated, U i
j is computed as follows

U ′ = c1r1
(

prev bestj − dj
)

(9)

U ′′ = c2r2 (global best − dj) (10)

U i
j = ωU i−1

j + U ′ + U ′′ (11)

The process of particles navigating the search space continues

until some stopping criterion is satisfied.

In its original form, PSO is designed to operate in a contin-

uous space with particles and velocities for an n-dimensional

search space encoded as vectors in R
n. Consequently, PSO

needs to be adapted to operate on a discrete search space. To

this end, work such as Chen et al. [17], Akhand et al. [18],

Pang et al. [19][20], Liu and Huang [21], and Zhang et al.

[22] have adapted PSO to solve various discrete problems by

proposing extensions to PSO and redefining components of

PSO to suit the objective to optimize.

For our problem, our goal was to find the allocation X

that maximizes J . Consequently, valid allocations constituted

particles for our implementation of PSO. Given that the

velocity is supposed to intelligently inform the generation of

a new position from the current position, we determined the

subtraction, addition, and scalar multiplication as canonically

defined on matrices was ill-suited for generating new allo-

cations. To this end, we redefined subtraction, addition, and

multiplication to treat the matrices like fuzzy sets within the

context of velocity computation similar to what is detailed in

Chen et al. [10]. The definitions are as follows:

(X−Y)ij =











0 if Xij = 0

1 if Xij = 1 and Yij = 0

2 otherwise

(12)

(X+Y)ij =

{

Xij +Yij if Xij +Yij ≤ 1

1 otherwise
(13)

cXij =

{

cXij if cXij ≤ 1

1 otherwise
(14)

The above definitions are used to generate a N ×K matrix

that can then be used to inform the modification of a particle’s

position. Like in Chen et al. [17], we use the cutθ operator

to generate a crisp velocity. For every particle, a new value

of θ is generated every iteration from a matrix in the space

{0, 1}N×K as described by:

cutθ (Xij) =

{

1 if Xij ≥ θ

0 otherwise.
(15)

This matrix is then used in conjunction with a particle’s

position to construct, by means of random sampling on the

unified sets for each stage, a new position such that the

invariant
∑K

k=1

∑N
i=1

Xik = M and ∀i
∑K

k=1
xik ≤ 1 where

X is the particle holds. To further reduce computation time,

the approximation Ĵ is used to compare particles and get

an approximation of their objective value. However, once the

optimal allocation is identified, the actual objective function

value is computed using J .

IV. NUMERICAL RESULTS

We evaluated the accuracy and performance of the afore-

mentioned optimization methods by running their Python

2.7 implementations on a server with 2GB of RAM and a

1.8 GHz processor. Numpy [23] and NetworkX [24] were

used to provide numerical computing support, the betweeness

centrality implementation, and a base for our own graph data

structures. To evaluate performance, we used Python’s built-in

Timeit module. For the PSO, ω, c1, c2 and the default number

of particles were set to 0.4, 0.5, 0.75, and 100 respectively.

A. Dataset Description

The Erdős-Rényi [25] model was used to generate the

graphs used in our experiments. The Erdős-Rényi [25] model

accepts two parameters, the number of nodes in the graph, N

and the probability of an edge existing between two arbitrary

nodes. Optimal values for datasets 1 and 2 were obtained

by using the model detailed in Hosein and Lawrence [3].

However, due to the computational complexity of said optimal

formulation, only PSO and GA were applied to datasets 3 and

4. For all datasets, the values for α and p0 were set at 10 and

0.05 respectively.

TABLE I
DATASET PARAMETERS

Dataset Users Impressions No. Stages Avg. No. Friends

1 15 5 3 10.86

2 25 5 3 10.88

3 500 7 3 99.07

4 1000 7 3 387.90

TABLE II
PERFORMANCE AND RUNTIME COMPARISONS

Dataset Method Optimal ~m Value Time (ms)

1

Optimal [1, 2, 2] 2.47 755935

Greedy Algorithm [1, 2, 2] 2.41 81

Particle Swarm [1, 2, 2] 2.41 26861

2

Optimal [2, 1, 2] 2.30 20919057

Greedy Algorithm [2, 1, 2] 2.20 110

Particle Swarm [2, 1, 2] 2.20 39575

3
Greedy Algorithm [2, 3, 2] 2.16 505474

Particle Swarm [2, 2, 3] 2.23 581779

4
Greedy Algorithm [3, 2, 2] 1.85 260739

Particle Swarm [2, 3, 2] 1.85 1049364

B. Results

As can be seen in Table II, the PSO and Greedy Algorithms

reasonably approximated the Optimal expected number of

clicks and correctly ascertained the optimal impression vector

(i.e., the number of impressions in each stage). Furthermore,

the PSO and GA both took substantially less time than

computation of the optimal solution.

C. Sensitivity Analysis

Due to the computational complexity involved in determin-

ing or approximating the expected number of clicks resulting

from an allocation of impressions to users, it is important to

understand the degree to which additional stages or impres-

sions can impact the expected number of clicks. To this end,

we varied the number of stages and the number of impressions

designated for dataset 3 and recorded the optimal values and

time taken by both the PSO and GA. In addition, to analyze

the impact of α on the expected number of clicks, we varied α

and computed the expected number of clicks for 7 impressions

allocated across 3 stages for dataset 4.

1) Dependence on Number of Stages: To compare the

values obtained by varying the number of stages, we kept

the number of impressions fixed at 7. Recall that, as the

number of stages increases, so to does the number of possible

allocations. For example with 3 stages and 7 impressions,

there are 36 possible impression allocations. In contrast, with

5 stages and 7 impressions, there are 96 possible impression

allocations. Consequently, as more combinations need to be

considered, the computation time of both the GA and PSO

would increase as we consider problems with more stages.

This can be seen in Table III, where increasing the number

of stages increases the computation time. Moreover, as the

number of stages is increased, the additional value of each

TABLE III
THE EFFECT OF K ON THE EXPECTED NUMBER OF CLICKS

K Method Optimal ~m Value Time (ms)

3
Greedy Algorithm [2, 3, 2] 2.16 505474

Particle Swarm [2, 2, 3] 2.23 581779

4
Greedy Algorithm [1, 1, 3, 2] 2.22 2188357

Particle Swarm [2, 2, 0, 3] 2.23 2823510

5
Greedy Algorithm [1, 2, 1, 3, 0] 2.26 9129112

Particle Swarm [1, 0, 1, 1, 4] 2.24 10181358

TABLE IV
THE EFFECT OF M ON THE EXPECTED NUMBER OF CLICKS

M Method Optimal ~m Value Time (ms)

7
Greedy Algorithm [2, 3, 2] 2.16 505474

Particle Swarm [2, 2, 3] 2.23 581779

8
Greedy Algorithm [1, 4, 3] 2.51 610680

Particle Swarm [4, 1, 3] 2.49 803556

9
Greedy Algorithm [2, 6, 1] 2.80 761927

Particle Swarm [2, 3, 4] 2.784 1052105

10
Greedy Algorithm [3, 3, 4] 3.27 895593

Particle Swarm [5, 2, 3] 3.155 1323398

additional stage decreases. In light of the computation time

incurred by increasing the number of stages, from these results,

we can infer 3 stages would be adequate for most problems.

2) Dependence on Number of Impressions: To compare

the values obtained by varying the number of impressions,

we kept the number of stages fixed at 3. As can be seen in

Table IV, adding more impressions can lead to a fair gain in

the expected number of clicks. It should be noted, however,

that increasing the number of impressions also increases the

computation time as more impressions would lead to more

potential combinations and a larger search space. This is high-

lighted by the fact that the PSO’s computation time increases

more steeply with respect to the number of impressions than

the GA due to PSO being a meta-heuristic for searching the

solution space of allocations. Furthermore, the GA tended to

find better allocations than the PSO for a larger number of

impressions. This can be remedied by having a larger initial

population of particles. However, by increasing the number of

particles, this would further increase the computation time of

the PSO.

3) Dependence on the Influence Probability Parameters: To

ascertain the impact of α on the expected number of clicks, we

varied the values α from 8 to 12 and computed the expected

number of clicks. The results of this experiment can be seen

in Table V. We find that the value of α had a small effect on

the expected number of clicks. As α increases, the expected

number of clicks also slightly increases. Recall that
(

1− α
N

)z

decreases as α
N

increases. Consequently, (1− p0)
(

1− α
N

)z

would decrease as α
N

increases. Thus 1− (1− p0)
(

1− α
N

)z

increases as α
N

increases, thereby leading to a higher prob-

ability of clicking and a higher expected number of clicks.

TABLE V
THE EFFECT OF α ON THE EXPECTED NUMBER OF CLICKS

α Method Optimal ~m Value Time (ms)

8

Greedy Algorithm [2, 2, 3] 1.82 337762

Particle Swarm [2, 2, 3] 1.82 1065990

9

Greedy Algorithm [2, 3, 2] 1.83 322050

Particle Swarm [2, 1, 2] 1.83 1068036

10
Greedy Algorithm [3, 2, 2] 1.85 260739

Particle Swarm [2, 3, 2] 1.85 1049364

11
Greedy Algorithm [2, 2, 3] 1.84 261751

Particle Swarm [2, 3, 2] 1.84 1057048

12
Greedy Algorithm [3, 2, 2] 1.85 258480

Particle Swarm [1, 3, 3] 1.85 1054867

V. CONCLUSION AND FUTURE WORK

The problem of Influence Maximization is important since it

can be used to model a wide range of problems in online social

networks. In particular, the problem of impression placement

so as to maximize the advertising revenue achieved. In this

paper we addressed a multi-stage version of the Influence

Maximization problem. We provided a new formulation of

the problem and used two techniques for its solution, the tra-

ditional greedy algorithm and a Particle Swarm Optimization

approach. These approaches were implemented and compared

in terms of accuracy and computation run time. Run time is

important since such problems need to typically be solved

in near real-time. In future work we plan to derive an upper

bound for the optimal value so that we can determine how well

these methods perform in very large online social networks

such as Facebook. We also plan to explore how techniques

such as MapReduce [26] can be used to solve very large

problems.

REFERENCES

[1] (2014) Facebook doubleclick for publishers (dfp) optimization web-
site. [Online]. Available: https://www.facebook.com/business/a/online-
sales/ad-optimization-measurement

[2] (2013) Iabinternet advertising revenue report. [Online]. Available:
http://www.iab.net/media/file/ IABInternetAdvertisingRevenueRepor-
tHY2013FINALdoc.pdf

[3] P. Hosein and T. Lawrence, “Stochastic dynamic programming model
for revenue optimization in social networks,” in Wireless and Mobile

Computing, Networking and Communications (WiMob), 2015 IEEE 11th

International Conference on, Oct 2015, pp. 378–383.
[4] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of

influence through a social network,” in Proceedings of the Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, ser. KDD ’03. New York, NY, USA: ACM, 2003, pp. 137–146.
[5] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn, “Social influence in social

advertising: Evidence from field experiments,” in Proceedings of the

13th ACM Conference on Electronic Commerce. ACM, 2012, pp. 146–
161.

[6] H. Bao and E. Y. Chang, “Adheat: An influence-based diffusion
model for propagating hints to match ads,” in Proceedings of the

19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: ACM, 2010, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/1772690.1772699

[7] S. Bhagat, A. Goyal, and L. V. Lakshmanan, “Maximizing product
adoption in social networks,” in Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, ser. WSDM
’12. New York, NY, USA: ACM, 2012, pp. 603–612. [Online].
Available: http://doi.acm.org/10.1145/2124295.2124368

[8] J. Hartline, V. Mirrokni, and M. Sundararajan, “Optimal marketing
strategies over social networks,” in Proceedings of the 17th

International Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 189–198. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367524

[9] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart, “Online influence
maximization,” in Proc. KDD, Sydney, Australia, Aug. 2015.

[10] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
Proceedings of the 16th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’10. New
York, NY, USA: ACM, 2010, pp. 1029–1038. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835934

[11] K. Jung, W. Heo, and W. Chen, “Irie: Scalable and robust influence
maximization in social networks,” in Data Mining (ICDM), 2012 IEEE

12th International Conference on. IEEE, 2012, pp. 918–923.
[12] H. Narasimhan, D. C. Parkes, and Y. Singer, “Learnability of influence

in networks,” in Advances in Neural Information Processing Systems,
2015, pp. 3168–3176.

[13] A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in Proceedings of the third ACM

international conference on Web search and data mining. ACM, 2010,
pp. 241–250.

[14] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” Theory OF Computing, vol. 11,
no. 4, pp. 105–147, 2015.

[15] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, 1977.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural

Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,
Nov 1995, pp. 1942–1948 vol.4.

[17] W. N. Chen, J. Zhang, H. S. H. Chung, W. L. Zhong, W. G. Wu,
and Y. h. Shi, “A novel set-based particle swarm optimization method
for discrete optimization problems,” IEEE Transactions on Evolutionary

Computation, vol. 14, no. 2, pp. 278–300, April 2010.
[18] M. A. H. Akhand, S. Akter, S. S. Rahman, and M. M. H. Rahman, “Par-

ticle swarm optimization with partial search to solve traveling salesman
problem,” in Computer and Communication Engineering (ICCCE), 2012

International Conference on, July 2012, pp. 118–121.
[19] W. Pang, K. ping Wang, C. guang Zhou, and L. jiang Dong, “Fuzzy

discrete particle swarm optimization for solving traveling salesman
problem,” in Computer and Information Technology, 2004. CIT ’04. The

Fourth International Conference on, Sept 2004, pp. 796–800.
[20] W. Pang, K.-P. Wang, C.-G. Zhou, L.-J. Dong, M. Liu, H.-Y. Zhang,

and J.-Y. Wang, “Modified particle swarm optimization based on space
transformation for solving traveling salesman problem,” in Machine

Learning and Cybernetics, 2004. Proceedings of 2004 International

Conference on, vol. 4, Aug 2004, pp. 2342–2346 vol.4.
[21] Z. Liu and L. Huang, “A mixed discrete particle swarm optimization

for tsp,” in 2010 3rd International Conference on Advanced Computer

Theory and Engineering(ICACTE), vol. 2, Aug 2010, pp. V2–208–V2–
211.

[22] C. Zhang, J. Sun, Y. Wang, and Q. Yang, “An improved discrete
particle swarm optimization algorithm for tsp,” in Proceedings of the

2007 IEEE/WIC/ACM International Conferences on Web Intelligence

and Intelligent Agent Technology - Workshops, ser. WI-IATW ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 35–38.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1339264.1339653

[23] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science

& Engineering, vol. 13, no. 2, pp. 22–30, 2011. [Online]. Available:
http://scitation.aip.org/content/aip/journal/cise/13/2/10.1109/MCSE.2011.37

[24] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using networkx,” in Proceedings of

the 7th Python in Science Conference, G. Varoquaux, T. Vaught, and
J. Millman, Eds., Pasadena, CA USA, 2008, pp. 11 – 15.

[25] A. Erdős, P.; Rényi, “On random graphs. i,” Publicationes Mathemati-

cae, pp. 290–297, 1959.
[26] J. Lin and M. Schatz, “Design patterns for efficient graph

algorithms in mapreduce,” in Proceedings of the Eighth Workshop

on Mining and Learning with Graphs, ser. MLG ’10. New
York, NY, USA: ACM, 2010, pp. 78–85. [Online]. Available:
http://doi.acm.org/10.1145/1830252.1830263

