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Abstract—The rapid increase in the global availability and
use of the Internet has made it the most effective platform for
the distribution of product information and advertising when
compared to the traditional media such as print, television and
radio. In addition, in the case of Online Social Networks (OSN),
one can take advantage of the influences that one’s actions has
on other users and, in particular, one’s friends. Even if a user
does not purchase a product, their online mention of the product
can have positive or negative influences. This social behavior can
be used to improve advertising strategies. For example, if a user
is given an advertisement impression (a linked icon) and clicks
on it then it is more likely that their friends (if told of the action)
will also click if they are subsequently given the impression.
In this paper we provide a Stochastic Dynamic Programming
formulation of this problem together with its solution. Because
of the computational complexity of the solution we provide a
simple heuristic that we show to be computationally much faster.

I. INTRODUCTION

The use of the Internet and its many applications continues
to have a rapid global growth. This rate of penetration has
increased dramatically due to the availability and falling costs
of mobile devices, especially in third world countries. This
platform is now recognized to be more efficient for advertising
products [1] when compared to traditional media because of
(a) ease of deployment (b) worldwide reach and (c) ability to
target one’s audience based on readily available information.
Many Internet companies derive the majority of their revenue
through advertisements (e.g., over 90% in the case of Facebook
[2]). Hence the optimal timing, placement and targeting of
advertisements, especially on Online Social Networks, has
become an important research topic.

In this paper we focus on the placement of advertisement
impressions in an OSN. Customers who wish to advertise pay
for a number of these impressions and the OSN operator must
then place these impressions on pages that are displayed to
its users. The objective is to place these impressions so as to
maximize the overall value to the customer. For example, this
value can be the resulting purchases of the customer’s products
by those OSN users that were given impressions. In our model
our objective is to place impressions so as to maximize the
total expected number of clicks. In general, the number of
purchases is proportional to the number of clicks and hence
our objective will, in general, achieve the customer’s objective.
Impressions are made in stages and, in each stage, a user is
provided with the total number of her friends who clicked on

the impressions in prior stages. This information influences the
probability that the user clicks on the impression and hence
can be used to improve the total number of clicks achieved.

Next we provide related work and show that our model
is quite different to what has been studied in the past and
hence there is no past work with which to compare. We then
provide, in Section III, a mathematical formulation of the
model and explain why it is realistic and captures the important
features of the problem being addressed. We then provide a
simple illustrative example to demonstrate the model and the
computational complexity of the solution. Finally in Section V
we provide a heuristic that can be used to achieve acceptable
performance at significantly reduced computational complex-
ity. Analytic bounds on the performance of this heuristic as
well as simulation results will be included in future work.

A. Related Work

Influence maximization in social networks was first formu-
lated as an optimization problem by Kempe, Kleinberg and
Tardos [3]. In their formulation users influence the buying
choices of each other and the objective is to choose a subset
of users who, if chosen, will result in the maximization of
the outcomes of these influences. In [4] the authors focus on
the influence model and, in particular, introduces a measure of
tie strength. The paper [5] proposes a method (which they
call AdHeat) in which hint words of influential users are
distributed to other users and aggregated hints are used to
determine the overall influence factor. Bhagat et. al. [6] argue
that influences alone are insufficient and that one also needs
to take into account adoption rate. Note that in their model
they include negative influences which we also do in ours. In
the paper [7], the authors use a voter model instead of the
influence models in prior papers and provide simple, efficient
solutions. In the paper by Saez et. al. [8] the authors investigate
the relative values of users in an OSN while in [9] a credit
distribution system is proposed for modeling the spread of
influence throughout the OSN. Finally [10] takes a different
approach which they call an influence and exploit strategy
where the product is initially made available for free and the
feedback from this is then used to market the product.

One difficulty in these influence models is the determina-
tion of the influence probabilities between parties. Lei et. al.
[11] propose an approach whereby user feedback is used to
update influence information while the influence campaign is



being executed. Several heuristics have also been developed for
the influence maximization model such as Prefix Excluding
Maximum Influence Path [12] and Influence Ranking and
Influence Estimation [13]. These are fast heuristics but they do
not provide any bounds on performance. Borgs et al. [14] does
provide and algorithm with accuracy guarantees and this was
further enhanced by Tang [15]. Work has also been performed
in topic propagation [16] and on influence propagation [17]
as well as in influence probability estimation [18] and on
community-based algorithms [19]. However these papers are
mostly based on the Influence Maximization model which is
somewhat different to our stage-based dynamic programming
model.

B. Contributions

The model we propose is unlike those of previous authors
and hence there are no other solutions with which we can
compare. The closest work to ours is that of [20] so we will
compare our model with theirs. In their paper a first user
is chosen and given an impression. Two outcomes (the user
clicked or did not click) must then be evaluated. In each case
the click probabilities are updated and another user is chosen.
This process is repeated until all impressions are made. This,
though interesting, may not be suitable in practice because (a)
the time between giving an impression and deciding to click is
variable and (b) if hundreds of impressions must be made then
the process is lengthy. Our approach uses stages and in each
stage a number of impressions are allocated such that over all
stages all impressions are assigned. Within a stage probabilities
are updated based on all impression allocations made in that
stage before solving the subsequent stage. Therefore one can
consider the model in [20] as the special case of our model in
which a single impression is allocated per stage. The other
extreme case of our model (i.e., all impressions assigned
in a single stage) has a simple solution in which the users
with the top click probabilities are chosen. Note that the
optimal solution increases with the number of stages (i.e., more
information is available for each decision made) but we believe
that a small number of stages will be sufficient to achieve gains
similar to what is obtainable with one impression per stage. We
are in the process of evaluating heuristics as well as bounding
the optimal solution.

II. PROBLEM DESCRIPTION

We model the OSN as a graph G(V,E) where each vertex
v ∈ V represents a member of the OSN and each edge e ∈ E
represents friendship (assumed to be reciprocal) between the
two users at the ends of e. We assume that an impression
is provided at most once to a user and the user either clicks
on this impression or does not click. We also assume that the
probability that a user clicks on an impression is influenced by
the set of friends of that user who were given impressions and
clicked or did not click. In other words, if several friends of a
user received impressions and many clicked then we assume
that the user is more likely to click. If, on the other hand,
many received impressions but many did not click then it is
less likely that the user will click. This influence relationship
has been well studied in the literature (e.g., see [20]) and is
typically modeled by some probability function.

The model consists of multiple stages with each stage
separated in time (e.g., one hour). Within each stage we assume
that a certain number of impressions can be assigned (this must
also be optimized). We must determine to which users these
impressions should be allocated. The outcomes of a stage (i.e.,
which of those given impressions clicked) are observed before
allocations in the subsequent stage are made. These outcomes
affect the click probabilities of each user and hence affect the
optimal allocation to be made in the subsequent stage.

We assume that the total number of impressions to be
assigned over all stages is given. This is determined by the
amount of money the client is willing to spend. Typically a
client (one who wants to advertise) pays per impression made.
The optimization problem therefore consists of (a) determining
the optimal number of impressions to be allocated in each stage
and (b) given the number of impressions in a stage determining
the optimal allocation. Note that each of these will depend on
the outcomes of prior allocations and outcomes so the problem
needs to be resolved at each stage. In other words, at each stage
we first determine how many of the remaining impressions
should be assigned in the stage and then we find the optimal
allocation of those impressions to users.

In order to better illustrate the problem we provide a simple
two stage example which is illustrated in Figure 1. Here we
have a friendship graph with users Joe, Jack etc. Tom has three
friends, Jill, Joe and Kim. Note that it is possible to have cycles
in this graph as we see in the cycle containing Joe, Pat, Mary
and Jack. Given this graph, suppose that impressions (indicated
by red circles) were given to Joe and Mary in stage 1 (the top
graph). This initial decision can, for example, be based on
whomever is most likely to click given an impression. Once
these impressions are given, some time period (the inter-stage
period) is waited before additional allocations are made.

The second graph contains the second stage of the problem
and the outcomes of the first stage. Suppose that Joe has
clicked his impression (represented by the green solid circle)
but Mary did not click her impression (represented by the red
circle). Because Joe clicked then this increases the probability
that Joe’s friends will click if given an impression. In the
second stage suppose that Tom and Jack are given impressions
given their updated click probabilities. Once these impressions
are allocated we again wait for the outcomes before solving the
subsequent stage. Note that Tom, Joe, Mary and Jack can no
longer be given impressions because an impression can only
be allocated at most once to each user.

The outcomes of the second stage are provided in the
last graph. Here we find that Tom clicked but Jack did not
click (e.g., because of the negative influence of Mary). So
we have a total of four impressions over the two stages
and two of those resulted in clicks. The ratio of clicks to
impressions is called the click-through rate which in this case
is 50%. The optimization problem is to determine the number
of impressions to use per stage and the allocation of those
impressions, to users, in each stage so as to maximize the
click-through rate.

Note that, even if a user clicks they may not purchase the
product but typically the purchase rate grows linearly with
the click-through rate and so maximizing the latter leads to
maximum revenue. Also note that the time between stages is
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Fig. 1. A Three Stage Problem

an important factor. If this time is too short then some clicks
may actually occur after the subsequent stage and these would
not have been taken into account. We assume that this time is
sufficiently long so that all users who were given an impression
have seen it and have decided to click or not click.

III. FORMULATION OF THE OPTIMIZATION PROBLEM

We provide a stochastic dynamic programming formulation
of the problem. Let K denote the number of stages and let the
index k denote the number of stages to go so that in the first
stage k = K − 1 and in the last stage k = 0. We formulate
the optimization problem for index k in terms of the optimal
solution of the problem with index k−1. We then provide the
solution for the problem in the final stage. Therefore given the
solution for the last stage we can obtain the solution for the
second to last stage problem and hence, by induction, for any
stage of the problem. In the following we use the variable x
to keep track of who was given impressions, the variable c to
keep track of who has clicked on impressions, the variable u is
the decision variable (the present impression assignments) and
p is used to represent the probability of clicking. We assume
that users are indexed from 1 to |V | ≡ N and, for user i in
stage k, we use the following notation:

xk[i] =

{

1 if i was previously given an impression

0 otherwise

ck[i] =

{

1 if i clicked a given past impression

0 otherwise

uk[i] =

{

1 if i is given an impression in this stage

0 otherwise

pk[i] =

{

prob(ck−1[i] = 1|uk[i] = 1, ~xk,~ck) if xk[i] = 0

0 otherwise

Note that if ck[i] = 1 then xk[i] = 1 since a user can only
click after given an impression. Furthermore uk[i] +xk[i] ≤ 1
since an impression cannot be given to a user more than once.
The vectors ~ck and ~xk contain the state of the system (i.e., the
past clicks and impressions) while the vector ~uk represents the
control (what actions need to be taken in the present stage).
The probabilities ~pk depend on the state in that it depends on
how many of i’s friends were given impressions (~xk) and how
many of those clicked (~ck). We will assume that pK−1[i] = p̂
for all users. The probabilities are then updated at each stage
based on the state.

Let mk denote the number of impressions allocated in stage
k and assume that the total number of impressions available
is M . Typically the number of impressions is less than the
number of users so we assume M < N . Note that allocating an
impression can never decrease the number of clicks and hence
if we are maximizing the number of clicks we can assume that
all impressions are used so that

K−1
∑

k=0

mk = M. (1)

For a given impression allocation ~uk in stage k, the
expected total number of clicks is given by the sum over
all possible outcomes, the probability of the outcome times
the optimal expected number of clicks for the following stage
problem given the outcome. Let V ∈ {0, 1}N represent the set
of possible outcome vectors given some allocation ~uk. If ~v ∈ V
then v[i] = 0 if uk[i] = 0 (since a click cannot occur without
an impression) and v[i] = 0 or 1 if uk[i] = 1. Therefore
|V| = 2mk since mk impressions are provided in this stage.
The probability that ~v occurs is given by

Pr(~v) =

N
∏

i=1

uk[i]{pk[i]v[i]+ (1−pk[i])(1− v[i])}+1−uk[i]

(2)
If uk[i] = 0 (no impression given to the user) then the
corresponding term in the product is 1 while if uk[i] = 1
then the corresponding term in the product is pk[i] if v[i] = 1
(corresponding to a click outcome) and it is (1 − pk[i]) if
v[i] = 0 corresponding to a non-click outcome.

For an allocation ~u and outcome ~v the state is updated as

~xk−1 = ~xk + ~uk

since new impressions have been allocated and

~ck−1 = ~ck + ~v

to account for those users who have clicked. Therefore if
J∗
k−1

(~xk−1,~ck−1, ~pk−1) is used to denote the optimal expected



total number of clicks for the subsequent stage then the
optimization problem for stage k can be written as

J∗
k = max

~u∈{0,1}N

∑

~v∈V|~u

Pr(~v)J∗
k−1(~x

k + ~u,~ck + ~v, ~pk−1) (3)

subject to:

N
∑

i=1

u[i] = mk and ~u+ ~xk ≤ 1.

Therefore the problem with k stages to go can be stated
in terms of the one with k − 1 stages to go. Let us now
consider the final stage. In this case, given an allocation
of impressions, the expected number of new clicks can be
obtained by summing, over all users given impressions, the
probability that the user clicks. This can be done because these
probabilities are independent. The set of previous clicks are
given in ~c0. Therefore in this case the optimization problem
can be simplified as follows:

J∗
0 = |~c0|+ max

~u∈{0,1}N

N
∑

i=1

p0[i]u[i] (4)

subject to:

N
∑

i=1

u[i] = m0 and ~u+ ~x0 ≤ 1.

Therefore we are trying to find m0 users that have not yet been
given an impression such that the sum of their probabilities is
maximum. The optimal solution is simply the m0 users with
the largest click probabilities who have not yet been given an
impression. Denote this optimal allocation by ~u∗ then we have

J∗
0 = |~c0|+

N
∑

i=1

p0[i]u
∗[i] (5)

Hence we can explicitly solve the last stage and by induction
solve for any number of stages.

In the above we assumed that the number of impressions
to be allocated in a stage is given. However this too must
be optimized. In the last stage the total number of impressions
remaining are assigned and hence this quantity is known. Now
consider the two stage case. We can find the optimal number
of impressions to use in the first stage by solving for each
of the M possible cases (i.e. 0, 1, 2, . . . , M − 1 impressions
in stage 1) with the remaining used in stage 2. The case that
provides the maximum expected total number of clicks is the
optimal choice. Again by induction one can similarly solve for
any number of stages. However, note the exponential growth
in possibilities that must be evaluated and the fact that each
evaluation is computationally intensive. Therefore for large
networks we will investigate heuristics that are tractable while
providing near optimal performance.

IV. AN ILLUSTRATIVE EXAMPLE

In order to better understand the proposed model and the
underlying optimization problem we will provide a simple
illustrative example. Such examples can help provide insight
that can be used to develop useful heuristics. We consider an
example with 6 users (A, B, . . . , F) with A and D each having
two friends while all others have three (see Figure 2).

F

A
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D

E

Fig. 2. Friendship graph for Illustrative Example

We assume that a total of M = 4 impressions are to be
allocated over two stages. We will solve for each possible
combination of impressions per stage, m1 = 1, 2, 3, 4. Note
that the cases m1 = 0 and m1 = 4 are identical because both
cases are simply single stage problems. We assume that the
click probabilities in the first stage is 0.25 for all users. Let us
consider any of the users and denote their number of friends by
f . Also let y denote the number of their friends that were given
an impression and clicked in the first stage and let n denote
the number of friends that were given an impression and did
not click in the first stage. We define the click probability in
the second stage as

p2 = max[0,min[1, 0.25 + α
y

f
− β

n

f
]] (6)

where the factors α and β are determined by the degree
of positive and negative influence of a friend’s decision. In
other words the probability of clicking grows linearly with the
fraction of friends who have clicked and falls linearly with the
fraction of friends who decided not to click. In practice one
needs to estimate these probabilities from past data as is done
in [11]. Note that if α = β = 0 then having multiple stages
does not help because the decisions of one’s friends become
irrelevant. In practice one would set β = 0 since it does not
make sense providing the user with negative information (i.e.,
their friends who were given impressions but did not click and
hence showed no interest in the product) since the idea is to
encourage users to click and hopefully purchase. However to
show the flexibility of our model we will use α = β = 0.25.
Note that the potential gains will therefore be less than if
we had used β = 0. Therefore if all of my friends were
given impressions and clicked then my probability of clicking
increases to 0.5. If, on the other hand, all of my friends were
given impressions and did not click then I too will not click
because my click probability becomes 0. Note that the case
m1 = 4 is a single stage problem and the 4 impressions can
be given to any 4 users and so the expected number of clicks
is 0.25× 4 = 1.

Let us now consider the case m1 = 1. In this case we
can see that the expected value will be the same for the
cases A and D and similarly for the cases B, C, E and
F because of symmetry. Suppose an impression is provided
to A. If A clicks then the probability vector in stage 2
becomes [0, 1/3, 1/4, 1/4, 1/4, 1/3]. In the second stage 3
impressions are available and so we can assign them to B,
C and F for an expected click total of 11/12 + 1 (for A). If
A did not click then the probability for the second stage is
[0, 1/6, 1/4, 1/4, 1/4, 1/6] and we can assign the impressions



TABLE I. OPTIMAL VALUES FOR m1 = 2

Pair AB AC AD BC BE BF

Value 97/96 187/192 47/48 1 1 179/192

TABLE II. OPTIMAL VALUES FOR m1 = 3

Triplet ABC ABD ABE ABF ACE BCE BEF

Value 1.014 0.995 1.014 1.010 0.906 0.992 0.992

to C, D and E for a expected click total of 3/4. The expected
click total is therefore given by 0.25(23/12) + 0.75(3/4) =
25/24. Suppose that the impression is instead given to B then
if B clicks the probability vector for the second stage becomes
[3/8, 0, 1/3, 1/4, 1/3, 1/4] and so we can choose A, C, E in
stage two for a value of 25/24 + 1. If B does not click then
the probability vector becomes [1/8, 0, 1/6, 1/4, 1/6, 1/4] and
we obtain an optimal second stage total of 2/3. Hence in this
case we get 0.25(49/24) + 0.75(2/3) = 97/96. Therefore the
value is larger if A (or D) is given the impression in stage 1
and the optimal value is 25/24.

Next we consider the case m1 = 2. Again because of sym-
metry we only need to allocate impressions to the following
pairs AB, AC, AD, BC, BE, BF. If impressions are allocated to
A and B then the possible outcomes are (11, 10, 01, 00) where
1 corresponds to a click. For 11 the resulting probability vector
is [0, 0, 1/3, 1/4, 1/3, 1/3] and so the second stage value is
2/3 (two impressions). For 10 we get [0, 0, 1/6, 1/4, 1/6, 1/3]
resulting in a second stage value of 7/12. For 01 we get a
probability vector of [0, 0, 1/3, 1/4, 1/3, 1/6] for a value of
2/3. For 00 we get [0, 0, 1/6, 1/4, 1/6, 1/6] for a value of 5/12.
Hence the expected value is given by

1

16
(2/3+2)+

3

16
(7/12+1)+

3

16
(2/3+1)+

9

16
(5/12) =

97

96

Similar calculations can be performed for the other cases. The
resulting optimal values are provided in Table I. Therefore the
optimal expected click total is achieved when impressions are
given to A and B with a value of 97/96.

Finally consider the case m1 = 3. In this case there are 20
different combinations for providing impressions and for each
of these we must evaluate the last stage for eight different
possible outcomes. We can eliminate some of these options
because of symmetry and so we only evaluate the optimal
solutions for the triplets provided in Table II. We find that
the optimal value of 1.014 is obtained for the solution in
which impressions are given to A, B and C (or any similar
combinations).

In Table III we provide the optimal value for the different
split of impressions across stages. The net result is that it is
optimal to allocate 1 impression in stage 1 and 3 in stage 2.
The impression in stage 1 should be given to either A or D.
Once this allocation is made we then await the outcome to
determine the optimal allocation for the last stage. Note that,
although we included the negative effects of non-clicking, there
is still a 4% increase for the two stage case compared to the
single stage case.

TABLE III. OPTIMAL VALUE VERSUS m1

m1 0 1 2 3 4

Optimal Value 1 1.042 1.010 1.014 1

V. A SIMPLE HEURISTIC

As one can see from the illustrative example in the previous
section. The computational complexity for the solution of this
problem grows rapidly with the number of users, the number of
stages, the number of impressions and the number of friendship
pairs. In practice there can be millions of users and hundreds
of impressions and so it is not feasible to optimally solve the
problem for real-world scenarios. In this section we consider
a simple heuristic that can provide acceptable performance but
which is computationally much faster and hence practical.

Suppose that at some stage we have n users who have
not yet been given an impression and m impressions to be
assigned. We first search over all users and find the user u1

whom, if given an impression provides the largest expected
number of total clicks (with no other impressions allocated).
We allocate an impression to this user and we then find
another user u2 which, if given an impression together with
u1, provides the largest expected number of total clicks. We
repeat this process until we obtain user um. We then assign
the m impressions to these m users. This process is repeated
at each stage. Note that it is optimal for the final stage.

For example, consider the illustrative example from the
previous section with m1 = 3. The first user u1 would be A (or
D) since this single user provides the largest expected number
of total clicks. We next find another user which together with
A will give the maximum expected number of total clicks.
For this example this will be user B (see Table I). Finally
we repeat to find the third user which will be user C (see
Table II). Similarly for the cases m1 = 1 and m1 = 2. In
this particular example the heuristic solution happens to be
the optimal solution but this may not be the case in general.
In future work we plan to investigate how far from optimal
the heuristic solution lies.

Next we compute the computational complexities of the
optimal solution and this sub-optimal heuristic. We will find
the number of single stage problems that needs to be solved in
each case. For the optimal case we must evaluate

(

n
m

)

possible
sets of impression allocations. For each of these we must
then evaluate all 2m possible outcomes and solve the single
stage problem for each. Therefore the number of single stage
problems that must be solved is given by

Copt =

(

n

m

)

2m. (7)

For the heuristic case, we first must solve 2 single stage
problems (i.e. whether user clicks or did not click) for each of
the n users. We then must search over n − 1 users and each
time evaluate 22 possible combinations (for the two users).
This is repeated until m users are chosen. Hence in this case
the number of single stage problems that must be solved is



given by

Csub =

m
∑

k=1

(n− k+1)2k = 2m+1(2+n−m)− 2n− 4. (8)

Assuming that m is some small fraction of n then for large n
we find

Copt

Csub

= O

(

1

n

(

n

m

))

, (9)

which grows very rapidly with n. Hence the proposed heuristic
can provide significant computational savings.

VI. CONCLUSIONS AND FUTURE WORK

We addressed the problem of optimizing the revenue
derived from advertising in an online social network. Our
formulation is different to past work in that it is based on
a stochastic dynamic programming model. We also showed
that, because of the computation complexity of obtaining the
optimal solution, heuristics are needed.

The focus of this paper was on providing the optimization
model and demonstrating, through a simple example, the
potential gains one can achieve by using this multi-stage ap-
proach with feedback as opposed to a single stage optimization
problem. We next plan to develop and implement a simulation
platform of a real-world OSN and demonstrate the gains that
can be achieved by using simple, practical heuristics, as the
one proposed in this paper.
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