
Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

Exploiting Gaussian Word Embeddings for
Document Clustering

Inzamam Rahaman, Patrick Hosein
University of the West Indies

Email: inzamam@lab.tt, patrick.hosein@sta.uwi.edu

Abstract—Every day, millions of documents in the form
of articles, tweets, and blog posts are generated by Internet
users. Many of these documents are not annotated with labels
making the task of retrieving similar documents non-trivial. The
process of grouping similar unannotated documents together
is called document clustering. When properly done, a cluster
should only contain documents that are related to each other in
some manner. In this paper we propose a clustering technique
based on Gaussian word embeddings which we illustrate using
word2gauss. We demonstrate that the method produces coherent
clusters that approach the performance of K-means on Purity
and Entropy scores while achieving higher recall as measured by
Inverse Purity.

Keywords—Document clustering; word embeddings; informa-
tion retrieval

I. PURPOSE

Document clustering is the unsupervised learning task of
partitioning a corpus of documents into clusters such that
related documents appear in the same cluster. It is an important
information retrieval task as it can be used to simplify web
searching [1] or aide in the efficient navigation of documents
by end-users [2]. This can be used to reduce information
overload especially when a large number of documents are
involved [3]. Moreover, document clustering can also be used
as an initial step in developing recommendation systems [4]
and multi-document summarization [5] - both being tasks that
reduce the cognitive load on end-users.

Distributed word embeddings, such as word2vec [6], are
increasing in popularity as they allow words - non-numerical
objects - to be mapped into numerical spaces such that
similar words are embedded into “near” to one another under
the chosen metric(s), thereby reducing semantic problems
to geometric ones amenable to more well-studied machine
learning and data mining techniques. One such distributed
word embedding is Vilnis and McCallum’s word2gauss [7].
In word2gauss, words are embedded in the space of Gaussian
Distributions as opposed to points in some vector space like
in word2vec. To do this, they utilized energy based learning
in which pairs of words that appear together frequently score
higher under the supplied energy function than pairs that are
infrequent or non-existent in the corpus. For example, if we let
E denote the energy function used and our corpus comprises
the sentence “The quick brown fox jumped over the lazy dog”,
with a window size of 2, E(quick, fox) > E(quick, lazy). As
discussed in their paper [7], Vilnis and McCallum examined
the inner product (IP) and Kullback-Leibler divergence (KL)
between the representative distribution of words as energy

functions for training their representations using stochastic
gradient descent.

If two documents are related, then it is reasonable to
anticipate that their constituent words ought to be related
as well. In terms of Gaussian word embeddings trained by
word2gauss, this would mean that if two documents D1 and
D2 are related, then we should be able to exploit the energy
values for pairs of words between documents to indicate this
relationship. In this paper, we explore how Gaussian word
embeddings may be exploited to cluster documents.

II. BACKGROUND

Methods for clustering may be classified as either hierar-
chal or partitional. In hierarchal methods, clusters are nested in
one another and can be visualized as a dendogram where the
documents being clustered constitute the leaf nodes. Hierarchal
clustering can be either agglomerative or divisive [1]. In
the former, each document would start off as a cluster onto
itself and clusters are repeatedly merged into larger clusters
according to some criteria until one large cluster containing
all documents are formed. In the later, the entire corpus is
considered one large cluster at the start, and this large cluster
is broken down into successively smaller clusters until we are
left with clusters containing a single document. Unweighted
Pair Group Method with Arithmetic Mean (UPGMA) is an
example of a hierarchal clustering method used for document
clustering [1]. In contrast, partitional methods of clustering find
flat clusters at once without merging or dividing the clusters
found [1]. K-means clustering is a quintessential example of
a partitional method of clustering.

The task of document clustering is often a challenging one.
While many types of data are structured, text often is not. To
facilitate clustering documents, we derive structure from text
by mapping text to some numerical representation such as a
bag of words [8] or TF-IDF [9] vector. In addition, document
clustering may involve using external sources of information
such as ontologies derived or enhanced from Wikipedia [10].

However, using representations such as TF-IDF vectors or
bag of word vectors is not without disadvantages. One such
disadvantage is that semantic relationships between related
pairs of words are lost. Some clustering methods such as
Hu et al. [10] and Hotho et al. [11] address this by using
external information to supplement the information provided
by the aforementioned numerical representations. However,
these methods use data that are external to the corpus. In
this paper, we present a method that exploits the relationships
between words encoded in Gaussian word embeddings derived

978-1-5386-2823-2/17/$31.00 c©2017 IEEE 1 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

by word2gauss [7] to cluster documents without resorting to
external information.

III. METHOD

A. Preprocessing

In order to reduce the size of the vocabulary and reduce the
noise introduced by suffix usage and formatting, we applied
several preprocessing steps to our corpus. First, all non-
alphabetical characters were removed from the document and
all words were translated to lowercase. After conversion to
lowercase, we removed the stop words defined by Porter [12].
Following the removal of stop words, we used a Snowball
stemmer [13] to map words to their predicted stems, thereby
eliminating the obfuscation of the underlying concepts in the
documents by the suffix transformations of its constituent
words. After creating the above corpus, we created a vocab-
ulary using all of the words contained in the corpus. We
then trained word2gauss using this corpus on the generated
vocabulary to obtain the Gaussian word embeddings.

B. Energy between Documents

Suppose that a document D can be represented as an
ordered sequence of words wj where j represents the position
of the word in the document. Let |D| denote the number of
words in document D. We compute the energy between two
documents Di and Dj as follows:

E(Di, Dj) =
1

|Di|

|Di|∑

m=1

|Dj |∑

n=1

E(wm
i , wn

j) (1)

For N documents, we use the above to compute a matrix
Π such that Πij = E(Di, Dj). After its initial generation, this
matrix is then normalized using min-max normalization. In
addition, we also generate a vector Γ such that Γi = maxj Πij .
Note that the computation of the energies between documents
can be computationally demanding, especially when the num-
ber of dimensions used to train the Gaussian distributions
is high. However, our method for determining the energy
between documents can be easily parallelized. This coupled
with memoization on the energies between words, reduces
runtime and can make the process more scalable over larger
document sets.

C. Clustering Process

Next we construct the clusters using a Chinese Restau-
rant inspired algorithm detailed below. Note, however, our
algorithm is sensitive to the order in which documents are
processed. Consequently we sorted the corpus in ascending
(Asc) and descending (Desc) order based on Γ. We also
considered the case of a random ordering of the documents
as a baseline to show that the ordering of the corpus affects
the quality of the clusters formed.

Algorithm 1 Algorithm for Document Clustering using Ener-
gies Between Documents

Input: Π - matrix of energies of document pairs, D - the
documents to cluster, N - the number of documents, M -
the maximum number of clusters

Output: C - the clusters
1: Set C to empty list
2: nc← 0
3: pnew← 1
4: for i = 1 to N do
5: pnew← 1

1+nc
6: doc← Di

7: u← sample from U(0, 1)
8: if u ≤ pnew then
9: if nc < M then

10: c← (doc)
11: Append c to C
12: nc← nc + 1
13: else
14: ci ← maxnc

i=1 max
|Ci|
j=1

Πdoc,Cij

15: Add doc to Cci

16: end if
17: else
18: ci ← maxnc

i=1 max
|Ci|
j=1

Πdoc,Cij

19: Add doc to Cci

20: end if
21: end for
22: return C

IV. EXPERIMENTAL RESULTS

A. Dataset

To evaluate our results, we used the Reuters-21578 dataset
bundled with nltk [14]. Since the categories assigned to articles
in the Reuters-21578 dataset would indicate a similarity in
the concepts between two articles, we exploited the fact that
the documents were annotated to determine the quality of the
clusters generated by our method. We extracted 500 documents
from the Reuters-21578 dataset that were assigned to a single
category. We omitted those documents that were assigned more
than one category as evaluating the quality of such clusters
accurately would have been more difficult.

After processing these 500 documents using the afore-
mentioned preprocessing steps, we obtained a vocabulary of
3984 words. These words were trained on the document set
using word2gauss. When training with word2gauss, we kept
the window size, number of samples per word, and the number
of dimensions to 15, 10, and 150 respectively. Moreover, we
considered, for each case, both covariance types - diagonal
(Diag) and spherical (Sph). Our document set contained 40
topics. Since we assumed that in the best case each cluster
would represent a single topic, we assumed the ”true” number
of clusters was 40. However, we also performed experiments
with 20 and 60 clusters to yield insight into how the number
of clusters affects the quality of the clusters formed.

B. Metrics

Even though document clustering is an unsupervised learn-
ing task as discussed by Amigó et al. [15], there are several
metrics that can be used to assess the quality of clusters

978-1-5386-2823-2/17/$31.00 c©2017 IEEE 2 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

formed when we use a labeled dataset. These metrics leverage
the assumption that the labels provide sufficient insight into
relative relatedness of documents in a cluster by framing a
cluster as the outcome of a query.

Since clusters are framed as the outcome of a query, some
of the metrics we used can be defined in terms of precision
and recall [15] as defined below:

Precision (Ci, Lj) =
|Ci ∪ Lj |

|Ci|
(2)

Recall (Ci, Lj) = Precision (Lj , Ci) (3)

where Ci is the ith cluster and Lj is the jth label. Using the
above, we may compute Purity (Pr) and Inverse Purity (InvPr)
as follows:

Pr (C) =

|C|∑

i=1

|Ci|

|D|
max

j
{Precision (Ci, Lj)} (4)

InvPr (C) =

|L|∑

j=1

|Lj |

|D|
max

i
{Recall (Ci, Lj)} (5)

In an ideal clustering, both Pr and InvPr would be equal
to 1. It would also be insightful to get some sense of the
distribution of the labels in a cluster. This may be determined
by the entropy of a cluster defined by:

Entropy (Ci) =
−1

log |L|

|L|∑

j=1

Precision (Ci, Lj)

logPrecision (Ci, Lj)

(6)

For a set of clusters, we may then compute a weighted
average over the entropy of each cluster:

Entropy (C) =

|C|∑

i=1

|Ci|

|D|
Entropy (Ci) (7)

C. Results

To benchmark our method, we considered both K-means
[16] and UGPMA [1] applied to the TF-IDF matrix generated
from our preprocessed corpus. In addition, we also benchmark
against a completely random assignment of documents to clus-
ters where the cluster assignment for any document is drawn
from U(1, k). Recall that we varied the energy functions and
covariance types used to train the Gaussian word embeddings,
as well as the ordering of the documents used in the process
described our algorithm detailed above. We record each such
scenario as a triple with the format <energy function>-
<covariance type>-<ordering of documents by Γ>.

As seen in Tables I, II and III, K-means exhibited the
best performance under purity. Consequently, if we frame the
clustering as a document retrieval task, K-means exhibited
higher precision than the other methods. Moreover, K-means
also tended to achieve lower entropy scores, meaning that
clusters tended to have less noise. That being said, the inverse
purity, analogous to recall, for K-means is noticeably lower

TABLE I. QUALITY OF CLUSTERS GENERATED WHEN k = 20

Method Pr InvPr Entropy

Random 0.524 0.116 0.412
K-means 0.628 0.326 0.290
UGPMA 0.532 0.928 0.506
IP-Diag-Asc 0.600 0.888 0.390

IP-Diag-Desc 0.514 0.782 0.492
IP-Diag-Rand 0.556 0.934 0.484
IP-Sph-Asc 0.558 0.958 0.393
IP-Sph-Desc 0.514 0.832 0.480
IP-Sph-Rand 0.560 0.944 0.492
KL-Diag-Asc 0.564 0.744 0.440
KL-Diag-Desc 0.514 0.834 0.479
KL-Diag-Rand 0.546 0.696 0.439
KL-Sph-Asc 0.646 0.668 0.310
KL-Sph-Desc 0.522 0.730 0.476
KL-Sph-Rand 0.544 0.646 0.399

TABLE II. QUALITY OF CLUSTERS GENERATED WHEN k = 40

Method Pr InvPr Entropy

Random 0.512 0.134 0.369
K-means 0.648 0.256 0.265
UGPMA 0.600 0.743 0.400
IP-Diag-Asc 0.640 0.900 0.355

IP-Diag-Desc 0.524 0.720 0.460
IP-Diag-Rand 0.592 0.834 0.420
IP-Sph-Asc 0.636 0.912 0.357
IP-Sph-Desc 0.574 0.632 0.474
IP-Sph-Rand 0.580 0.828 0.420
KL-Diag-Asc 0.608 0.802 0.365
KL-Diag-Desc 0.516 0.742 0.459
KL-Diag-Rand 0.572 0.664 0.411
KL-Sph-Asc 0.596 0.714 0.389
KL-Sph-Desc 0.514 0.742 0.497
KL-Sph-Rand 0.562 0.662 0.405

than the inverse purity scores for our methods or for UGPMA.
Moreover, despite our methods typically performing slightly
worse under purity and entropy when compared with K-means,
the differences in performance in the highlighted cases are
small; however, the gains in inverse purity are quite substan-
tial. Consequently, we argue that, from a document retrieval
perspective, our method generates higher quality clusters than
K-means or UPGMA.

In addition to the differences in the cluster qualities formed
between our methods and K-means and UPGMA, there are
also noticeable differences between the quality of the clusters
derived for the different training parameters for our method.
For example, when we used a sequence of documents ordered
by Γ in ascending order, we achieved more coherent clusters

TABLE III. QUALITY OF CLUSTERS GENERATED WHEN k = 60

Method Pr InvPr Entropy

Random 0.510 0.128 0.331
K-means 0.684 0.228 0.214
UGPMA 0.622 0.720 0.366
IP-Diag-Asc 0.682 0.812 0.279
IP-Diag-Desc 0.594 0.592 0.460
IP-Diag-Rand 0.638 0.636 0.400
IP-Sph-Asc 0.684 0.826 0.284

IP-Sph-Desc 0.576 0.590 0.479
IP-Sph-Rand 0.642 0.624 0.388
KL-Diag-Asc 0.662 0.686 0.294
KL-Diag-Desc 0.516 0.780 0.475
KL-Diag-Rand 0.576 0.646 0.389
KL-Sph-Asc 0.664 0.688 0.310
KL-Sph-Desc 0.522 0.730 0.476
KL-Sph-Rand 0.576 0.646 0.399

978-1-5386-2823-2/17/$31.00 c©2017 IEEE 3 | P a g e

Future Technologies Conference (FTC) 2017
29-30 November 2017| Vancouver, Canada

than when using the descending or random ordering. Moreover,
using random orderings proved more effective than descending
orderings. We hypothesize that those documents with relatively
weaker connections to other documents in the corpus act as
more effective seeds because they are more likely to represent
labels that are less represented in the sample or are more rep-
resentative of the core concepts underlying a particular label.
Furthermore, those embeddings trained using the inner product
based energy function also yielded better results than those
trained with KL divergence. We suspect that the asymmetry
resulting from a KL divergence based energy function leads to
a loss of information under our particular algorithm. However,
as noted by Vilnis and McCallum [7], these KL divergences
tend to capture entailment information. Consequently, we
believe that deriving or refining word ontologies using the
KL divergence scores [17] might be an interesting area of
investigation for future work.

V. CONCLUSION AND FUTURE WORK

In this paper we motivated the use of Gaussian word
embeddings in conjunction with a Chinese Restaurant Process
based algorithm to cluster documents and showed that our
algorithm achieves a good trade-off between purity, inverse
purity, and entropy when compared to K-means or UPGMA.
Work by Hotho et al. [11] has shown that word ontologies can
be useful in document clustering. We hope to extend work done
by Pembecci et al. [17] in using Gaussian word embeddings to
enhance word ontologies to leverage Hotho et al.’s [11] method
to produce higher quality clusters.

REFERENCES

[1] M. Steinbach, G. Karypis, V. Kumar et al., “A comparison of document
clustering techniques,” in KDD workshop on text mining, vol. 400, no. 1.
Boston, 2000, pp. 525–526.

[2] K. Eguchi, “Adaptive cluster-based browsing using incrementally ex-
panded queries and its effects (poster abstract),” in Proceedings of the

22nd annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 1999, pp. 265–266.

[3] C.-J. Lee, C.-C. Hsu, and D.-R. Chen, “A hierarchical document
clustering approach with frequent itemsets,” International Journal of

Engineering and Technology, vol. 9, no. 2, p. 174, 2017.

[4] P. Jajoo, “Document clustering,” Ph.D. dissertation, Indian Institute of
Technology Kharagpur, 2008.

[5] C. Shen, T. Li, and C. H. Ding, “Integrating clustering and multi-
document summarization by bi-mixture probabilistic latent semantic
analysis (plsa) with sentence bases.” in AAAI, 2011.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[7] L. Vilnis and A. McCallum, “Word representations via gaussian em-
bedding,” 3rd International Conference on Learning Representations,
2015.

[8] A. Huang, “Similarity measures for text document clustering,” in
Proceedings of the sixth new zealand computer science research student

conference (NZCSRSC2008), Christchurch, New Zealand, 2008, pp. 49–
56.

[9] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine

learning, 2003.

[10] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou, “Exploiting
wikipedia as external knowledge for document clustering,” in
Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, ser. KDD ’09. New
York, NY, USA: ACM, 2009, pp. 389–396. [Online]. Available:
http://doi.acm.org/10.1145/1557019.1557066

[11] A. Hotho, S. Staab, and G. Stumme, “Ontologies improve text document
clustering,” in Data Mining, 2003. ICDM 2003. Third IEEE Interna-

tional Conference on. IEEE, 2003, pp. 541–544.

[12] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[13] Martin F Porter, “Snowball: A language for stemming algorithms,”
2001.

[14] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the

COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[15] E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of
extrinsic clustering evaluation metrics based on formal constraints,”
Inf. Retr., vol. 12, no. 4, pp. 461–486, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s10791-008-9066-8

[16] B. C. Fung, K. Wang, and M. Ester, “Hierarchical document clustering
using frequent itemsets,” in Proceedings of the 2003 SIAM International

Conference on Data Mining. SIAM, 2003, pp. 59–70.

[17] İ. Pembeci, “Using word embeddings for ontology enrichment,” Inter-

national Journal of Intelligent Systems and Applications in Engineering,
vol. 4, no. 3, pp. 49–56, 2016.

978-1-5386-2823-2/17/$31.00 c©2017 IEEE 4 | P a g e

