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Abstract—Smart grids have been introduced in many de-
veloped countries and facilitate more efficient and economical
utilization of generated power. The components of such a grid
are usually remotely monitored and selected components are con-
trolled either manually or through advanced software programs.
This is called an Advanced Metering Infrastructure (AMI) and
the objective is to globally optimize available resources. In this
paper we assume that an Automated Meter Reading (AMR)
network is available. AMR is the precursor to an AMI system.
AMR meters periodically report electrical energy consumption
information to a centralized location and can also (since they
contain batteries) transmit indications of power outage as well
as power restoration. This information may also detect failed
network components. The trade-offs considered are, the time
taken to detect the failure, the accuracy of the fault decision
and the amount of data required to perform these tasks.

Keywords—AMI, AMR, Fault Detection, Internet of Things,
Smart Grids

I. INTRODUCTION

Smart grids (see Figure 1) use an Advanced Metering
Infrastructure (AMI) to more efficiently support the transporta-
tion, distribution and consumption of electrical energy. It is an
integrated system of smart meters, communications networks
and data management systems that facilitate real-time two
way communication between utilities and consumers [1]. Thus,
AMI allows utilities to access an abundance of information.
This information includes electrical consumption data, load
profile data, demand, time-of-use, voltage profile data and
power quality data [2]. AMI allows for more precise meter
readings, earlier detection of meter failures, flexible billing
cycles and reduced maintenance costs [3].

Smart meters can monitor and control all the devices and
appliances in a customer’s home as well as collect diagnostic
information about the distribution grid [4]. These meters can
display to customers in real-time their usage and, by extension,
the cost that they are incurring. Smart meters can remotely
switch off electricity to a customer and also remotely control
the maximum electricity consumption [5]. This allows utilities
to bill customers when they use energy from the grid but
refrain when energy is used from the customer. With all the
information that the customer receives, it allows them to make
a more informed decision about their energy usage and thus
can save money and reduce wastage of energy. Also, the
utilities can enable dynamic pricing which is the process of
either increasing or decreasing the price based on demand and
this would help these companies have a more steady energy
consumption throughout a day.

An AMI can also assist with outage management, allowing

Fig. 1. Power Grid Architecture

utilities to detect any faults (outages) and then determine the
severity and location of the outage so that they can restore
power quickly. Thus, fault detection and fault localization are
very important. In contrast to AMI networks, Automatic Meter
Reading (AMR) networks provide one way communication
from the reader to the utility and is essentially used for
reporting energy usage. These are less costly but have limited
capability. In many developing countries AMR rather than
AMI networks are available.

Previous work in this area typically assumes an AMI
network and focus on use of readings within the network using
Intelligent Electronic Devices (IED) to detect faults. Here is a
summary of some of this work. The paper by Singh et. al. [6]
presents a technique to detect and classify the different shunt
faults on transmission lines for quick and reliable operation of
protection schemes hence their focus was on transmission line
faults. Similarly the paper by Silva et. al. [7] also focuses on
transmission line faults. The papers [8] and [9] do investigate
fault localization but this is achieved through information
within the network. In [10] they investigate the optimal place-
ment of sensors within the network for outage detection. In
the paper by Kezunovic et. al.[11] the authors address the
issue of improving the accuracy of fault location methods in
smart grids using an abundance of Intelligent Electronic Device
(IED) data. Here again the work is network-centric as access
to information from devices within the network is assumed. In
the work by Zhang et. al. [12] a wireless sensor network is
deployed and used for fault detection in the power grid.

The research described in this paper varies from the
published literature given the unique constraints. Firstly, this
research is being performed for a utility company in a small
island developing state. Secondly, although the distribution



network has sensors that are used for fault detection, these
are not optimally maintained and an alternative (supplemental)
mechanism for detecting faults in the distribution network is
required. Thirdly this mechanism should not require any addi-
tional equipment (i.e., no additional wireless sensor network,
and no access to the internal sensor readings). Since the AMR
network is well maintained, given it’s paramount role in billing
customers, the approach employed uses the AMR for fault
detection. Although an AMR infrastructure is quite limited in
functionality, we show that such a network may be used for
detection of faults in the power system. In the next section the
mathematical models used for the analysis is provided. This
is followed by performance analysis results for some simple
examples.

II. MATHEMATICAL MODELS

A. Wireless Meter Communication Network

In the power utility network being considered, each con-
sumer is provided with a meter and this device periodically
reports electrical consumption information to a centralized
server (see Figure 2). On a periodic basis (e.g., every 15
minutes) each meter initiates transmission of its reading to a
Cell Control Unit (CCU) using a Frequency Hopping Spread
Spectrum Network. This is a shared network in which each
meter uses an allocated frequency hopping pattern for its trans-
mission. However, because of collisions, the initial attempt
may not be successful and so additional attempts will be made
until the transmission is successful. Failures are therefore due
to either poor channel conditions or high interference. By
properly choosing CCU sites one can ensure a sufficiently high
reporting success rate. In this paper we will assume that each
report succeeds with some probability but this probability will
be aggregated with some other factors which we will discuss in
later sections. Note that the initiation of a report takes place
at periodic intervals but the correct receipt of a report may
not be exactly periodic because of possible re-transmissions.
However, within a 15 minute period we can assume that, if a
report is received correctly then it occurs with equal probability
throughout the period.

During an outage, each meter that is affected sends a Power
Outage Notification (PON). When power is restored it also
sends a Power Restore Notification (PRN). Note that since all
affected meters will detect an outage at approximately the same
time then they cannot all simultaneously send a PON as soon
as the outage occurs since this will lead to high interference
and low success rate. We therefore assume that PONs are
transmitted using the same schedule as regular load reports.

Let p denote the residual success probability of a trans-
mission of a PON. This is the success probability after all
transmission attempts are made. Suppose that we start at some
arbitrary time t0 (e.g., the outage instant) and consider the
period [t0, t0+T ] where T is the reporting period. We expect to
receive, with probability p, at most one PON during this period
and this can arrive at any time during the interval. Therefore
the probability that a PON is received by time t0 + t is given
by pt/T for 0 < t < T . This is the transmission probability
model we use for PONs from each affected meter. Note that
in the Spread Spectrum network, a PON may be received by
multiple CCUs. The same model can be used for such reports.
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Fig. 2. Meter Communication Network

However, in this case the probability of correctly receiving the
PON will be higher but for our analysis we do not consider
this detail.

B. Power System Model

We model the transmission portion of the power grid as
a mesh network and the distribution portion as a directed
tree (see Figure 3) rooted at the distribution substation with
the leaves being the smart meters. Our focus is failure of
components in the distribution network (the distribution
substation and transformers) and we ignore the transmission
network which has significant redundancy due to its mesh
layout. The children of the substations are transformers and
the children of the transformers are smart meters. We use the
following notation. We define the graph G(V,E) where V
denotes the set of vertexes and E denotes the edges where
each edge e = (i, j) connects two vertexes i and j. For each
i ∈ V we denote its set of children by Ci and its set of leaf
descendants by Di. For each leaf j ∈ {V } we denote the set
of ancestors of j by Aj . For any set S we use the notation
|S| to denote the number of elements in S. Finally {S − k}
will be used to denote the set S minus the element k

Failure of any node i results in all leaf descendants of i
generating PONs. However given that each of these meters
generated PONs we cannot conclude that node i had in fact
failed. In fact all children of i may have failed leading to the
same set of PON generating meters. However for our analysis
we assume that the simultaneous failure of multiple nodes is
unlikely and so our approach would be, given a set of PON
generating meters, we determine the node that would have
caused this event if it had failed.

Given a set of meters that generated PONs, we will
determine the likely failed component. For this component
we determine the probability that it failed. Since PON reports
are not all immediately made, this probability will increase
over time and after one report period will reach its highest
value. So for example if we determine that we require the
probability that the decision is correct is at least 0.95 then
we can determine how long one must wait to achieve this
probability. By varying various parameters we can determine
the best trade-off to achieve the desired results.



Fig. 3. Power Grid Tree Model

III. PERFORMANCE ANALYSIS

In this section we analyze the proposed power grid model
described in the previous section. We follow this with some
illustrative examples to show that the proposed approach,
which does not require any new equipment, can provide
satisfactory results especially if it is only being used as an
additional tool for fault detection.

A. Instant PON Reporting

In practice there can be thousands of meters and so it may
not be feasible to take into account all meter readings. Or it
may be that in some cases a meter does not report an outage
because the battery in the meter has drained. Therefore we
will assume that each meter reports an outage with probability
p. Note that this probability is being used to capture the
probability that the meter is included in the algorithm (e.g.,
not all meters may be included in the inventory and this will
capture the percentage that is included) and also the probability
that a PON from a meter (that is chosen for the algorithm)
arrives correctly at the CCU.

Note that, given the failure of a node i all leaf descendants
of i will transmit a PON with probability p. However the
inverse need not be true. For example, if we consider failure
of a substation serving only two distribution transformers and
all meters for one transformer reported their outage but none
for the other transformer reports an outage then the conclusion
would be that the transformer with the meters that did report
correctly was faulty which is not the case. However, the latter
case requires simultaneous failures of multiple components and
we will ignore such events since they are unlikely.

Let us first demonstrate how we determine the potentially
faulty component and then we will compute the probability
that this determination is correct. Given the set of meters S,
and assuming that a single fault occurred, the faulty component
(node) is determined as follows. We find the closest common
ancestor of all members of S that reported a PON. This can
be easily computed using the pseudo-code provided in Figure
4.

1: S ← the set of meters
2: L← 1 ⊲ level counter
3: F ← 0 ⊲ denotes the faulty component
4: while F == 0 do ⊲ For each leaf k, Ak is ancestor list,

if k ∈ S reports PON then xk = 1 else xk = 0
5: for all k ∈ S do
6: if xk == 1 then
7: if F == 0 then
8: F ← Ak(L)
9: else

10: if F 6= Ak(L) then
11: L← L+ 1
12: F ← 0
13: exit
14: end if
15: end if
16: end if
17: end for
18: end while

Fig. 4. Pseudo-code for determining faulty component

We next compute the probability of correctly determining
the faulty component. In order to do this let us first determine
the minimum amount of information required to make a correct
determination. Note that if i is the faulty component (and we
assume that it has more than 2 children) then at least two of
its children must each contain at least one leaf descendant that
reported the outage. If this was not the case and only one
child of i had a leaf that generated a PON then the lowest
common ancestor can get no further than this child. Also note
that each of these children need only have one leaf descendant
that reported the outage since that single leaf would cause the
search for an ancestor along that sub-tree.

For any child k of node i let qk denote the probability that
one or more of the descendants of k reported a PON. This is
given by

qk = 1− (1− p)|Dk|. (1)

Given these probabilities we can now compute the prob-
ability that i has two or more children with leaf descendants
who reported a PON. This is simply given by

Pi = 1−

(

∏

k∈Ci

(1− qk)

)

−





∑

k∈Ci

qk
∏

j∈{Ci−k}

(1− qj)



 .

(2)

Here we compute the probability that the decision was
incorrect as the probability that no child had leaves that
generated a PON plus the probability that exactly one child
had a leaf that generated a PON (these are the two right hand
terms). The probability that the decision is correct is then just
one minus this quantity. We can now substitute to obtain

Pi = 1−

(

∏

k∈Ci

(1− p)|Dk|

)

−

∑

k∈Ci



(1− (1− p)|Dk|)
∏

j∈{Ci−k}

(1− p)|Dj |



 . (3)



For example consider the case in which i has C children
and each of them had M leaf descendants. In this case the
above can be simplified to obtain

Pi = 1− (1− p)MC −C(1− (1− p)M )(1− p)M(C−1). (4)

B. Delayed PON reporting

In the above cases we assumed that the PON notifications
were instant. However in practice this is not the case. When a
failure occurs, if all meters simultaneously attempted to report
a PON then the resulting interference would be very high and
result in the failure of all or most notifications. We therefore
assume that, on failure, the meter continues using the same
reporting schedule that was used for load reports.

Let us assume that each meter makes a report every T
seconds but that they independently choose their initial start
time randomly between time 0 and time T . Again let p denote
the probability of delivery of the PON when it is sent. However
we now have a new factor. Suppose that the event occurs
at time t = t0. At time t0 + τ the probability that a PON
notification was attempted is τ/T and so the probability that
at this time a PON for this meter was delivered is pτ/T . At
time t0+T all meters that we previously considered as having
reported a PON with probability p would have done so. We
can now determine the probability of correct detection as a
function of time as:

Pi = 1−

(

∏

k∈Ci

(1− pτ/T )|Dk|

)

−

∑

k∈Ci



(1− (1− pτ/T )|Dk|)
∏

j∈{Ci−k}

((1− pτ/T )|Dj |)





(5)

for 0 ≤ τ ≤ T .

Note that we have many different parameters, each with
different trade-offs. p is determined by the actual number of
meters that are used for the algorithm, how many of these
are monitored for PONs (in most cases we can assume all)
and the probability that a PON, when sent, arrives correctly.
Note that the last factor is determined by the network design.
For example if the network is only being used to collect load
information for billing purposes then the network need not be
very robust since only one or two readings per day will suffice
for this purpose. In this case p will be low.

The parameter T determines how often a meter makes
reports to the CCU. If this is small then the probability of
successful delivery will decrease because of congestion or one
may have to increase the number of CCUs. If this value is
large then the PON notifications will be delayed longer on
average and hence the detection time will increase. Also the
operator may want to choose a large value and so have a
single CCU manage a large number of meters. The other
parameters such as number of meters per transformer, number
of transformers per distribution substation etc. are determined
by other requirements but these also affect how quickly one
can correctly determine a fault by the proposed method.

C. Other Scenarios

Consider the case of a power line failure. This is equivalent
to failure of an edge in the rooted tree. In this case if the
proposed approach is used, the lower endpoint of the failed line
will be determined as the failed node. Therefore the approach
can still be used to isolate the failure. Of course the case in
which the line from transformer to home is damaged is easily
detected.

In our discussion above we focused on a single failure.
However the approach can be expanded to include multiple
failures as follows. Once a fault has been detected and iden-
tified then all leaf descendants of the faulty component can
be removed from the tree and the algorithm can be continued
to determine additional faults. Once the faulty component is
repaired its leaf descendants can be re-added to the tree. In the
case of simultaneous of near-simultaneous faults the following
can be done. The algorithm may be able to capture one fault
first in which case the tree can be updated and then the other
one detected.

IV. AN ILLUSTRATIVE EXAMPLE

In our environment pole mounted 12kv/230V transformer
explosions due to induced over-voltages from direct or nearby
lightning strikes during tropical rainstorms are quite common
and hence are our focus. Again note that this approach would
typically be performed in addition to the more traditional
approaches but may be useful when the traditional approach
fails. Let us consider the following scenario (representative
of a small island nation). Assume that each transformer is
connected 20 meters apart and that each distribution substation
connects to 200 distribution transformers. Hence a substation
services 4000 customers. Suppose that a generator feeds power
to 50 substations.

Let us first consider the case in which PON reports are
delivered immediately. In Figure 5 we plot the probability of
correct detection of the failed component as a function of the
probability p that a meter that is affected generates a PON.
We perform this for distribution transformers and substations.
We see that, because of the large number of meters within
the substation sub-tree, the probability of correct detection is
quite high even for small p. In the case of the distribution
transformers when p reaches around 0.1 (10%) we find that
the probability of correct detection reaches around 90%.

Next we consider the more realistic case in which PON
transmissions are not sent immediately when the outage occurs
but is staggered in the same manner as load reports. In this
case we assume p = 0.5 and T = 15 minutes with the
same distribution of components as in the previous scenario.
In Figure 6 we plot the probability of correct detection as a
function of time. Here we find that it takes about 4 minutes
before the probability of correctly determining the failed
component reaches 0.95.

Next suppose that we wanted to decrease the fault detection
time. Suppose that we assume that all meters are included in
the algorithm and that the probability that an affected meter
reports a PON within T time is 0.9. Therefore in this case
we use p = 0.9. Furthermore we will assume T = 10 and so
reports are made more frequently. In this case the probability
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Fig. 5. Dependence of Accuracy on Number of Meters
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Fig. 7. Dependence of Accuracy on Time since Failure

of correct detection as a function of time is given in Figure
7 and we see the effect of these parameter changes on the
detection time. Here the fault is detected within two minutes
with a probability of about 0.99.

V. CONCLUSIONS AND FUTURE WORK

We were tasked with using AMR meter readings (and
nothing else) to detect faults in a power system of a small
island state. In our scenario the distribution network is radial
and the AMR network uses frequency hopping for transmis-
sions. We developed a model that was used to determine
the performance of the resulting approach. We showed that,
although not instant, the approach can be used as a secondary
scheme to determine failures and to locate the source of the
failure. Such an alternative scheme is needed since in many
cases the network component sensors or the reporting of these
readings fail to work properly. The proposed scheme requires
no additional equipment and can identify the fault in less
time than it takes the crew to arrive. Based on this work we
are developing an APP that can be used by the utility crews
to pinpoint failures especially transformer failures. Since the
GPS coordinates of all grid components are known the APP
would use the previously described approach to determine the
faulty component with sufficient accuracy and then indicate
the location of the failed component on a map.
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