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Abstract—Due to the urgency of the Climate Change phe-
nomenon, it has become important to estimate the rate of defor-
estation in various countries since forests are essential for oxygen
generation. The advent of popular machine learning algorithms,
such as those that are applied to the field of computer vision,
has led to the use of approaches, such as fully convolutional
neural networks (FCN), for performing semantic segmentation
on satellite images to determine forested and non-forested areas.
However, these models tend to be computationally intensive and,
even with the advancement of specialized hardware such as
GPU’s (Graphical Processing Units), these approaches can still be
quite costly especially for Small Island Developing States (SIDS)
which are dis-proportionally affected by Climate Change. We
consider the use of less computationally intensive approaches
such as, logistic regression, linear support vector machine and
Naive Bayes to achieve similar performance to a FCN but at a
much lower cost. We perform semantic segmentation on satellite
images to determine the percentage of forested areas and use
this information to determine the rate of change of deforestation
over a period of time. We compare the performance, computing
requirements, storage requirements and robustness of different
Machine Learning techniques.

Index Terms—Deforestation; Machine Learning; Satellite Im-
agery; CNN; Climate Change; Small Island Development States

I. INTRODUCTION

Deforestation is a global problem [1] that has affected many
forests around the world. However, for Caribbean islands, it
is quite difficult to track the rate at which this is occurring.
Caribbean islands are typically not within the footprints of
popular satellites such as Landsat or Sentinel since these satel-
lites typically survey places in the United States of America
and the European Union. Hence, Caribbean Islands are forced
to use other means of obtaining deforestation data such as the
one described in [2], [3], and these forms of gathering data can
be time consuming and are not easily accessible to the public.
Additionally, it can become dated and more recent satellite
images must then be labeled.

Hence, being able to determine a way to track deforestation
is a useful tool since it would give smaller Caribbean islands
an idea of how the rate of deforestation is occurring. For the
area of remote sensing, computer vision has been able to solve
several problems ranging from crop and soil segmentation [4],
to cloud detection [5]. However, for many of these problems
a large dataset is available and easily accessible but for

Caribbean islands this is not the case since it can be costly to
obtain.

The Normalized Difference Vegetation Index (NDVI), [6],
is typically used to monitor drought, forecast agricultural
production and assist with managing fire zones. It is calculated
by the following formula:

NDVI =
NIR− RED

NIR+ RED

where NIR is reflection in the near-infrared spectrum and RED
is reflection in the red range of the visible spectrum.

These images can therefore be used to distinguish between
live vegetation and dead vegetation or no vegetation such as
in cities. A few studies [7], [8], [9] have used NDVI sensors
in order to look at live vegetation to determine forested areas
such as in [10] which looked at tracking the rate at which
forests were being degraded in Pahang, Malaysia. Satellites
such as Landsat 8 contain the near-infrared and red channels
and hence NDVI images are easily accessible for most regions.
However, when it comes to Caribbean islands which have few
RGB images taken from these satellites, NDVI images are
consequently also uncommon.

Convolutional neural networks (CNN) have become the
state-of-the-art technique to be used in problems in the realm
of Computer Vision such as object recognition and image
segmentation. Specifically, fully convolutional neural networks
(FCN) [11] looked at the problem of having to label full scale
images by summarizing the features of an image by using
convolutions and later performs transposed convolutions to
return the fully labelled image. This work was then built upon
by [12] which proposed a model called “U-Net” which looked
at creating a “u-like” architecture which was symmetric and
uses convolutions in the first half of the model and in the other
half uses transposed convolutions. U-Net became quite popular
since the model was able to be adapted to a number of different
problems from cloud-segmentation [13] to multi-classification
problems used in UAV’s (unmanned aerial vehicles) [14], [15].

One problem with CNN’s and, by extension FCNs, is that
they are computationally intensive because convolutions try to
summarize the features of an image. It tends to be expensive
to summarize this data and then learn the correct filter to best
summarize this information. Additionally, using transposed
convolutions further increases the memory required to solve
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this problem since it also requires the learning of the correct
filters to reevaluate the images in a labelled format. Dedicated
hardware such as GPU’s (Graphical Processing Units) [16]
tend to perform better on these problems since a number of
these convolutional operations can be performed in parallel.
These, however, tend to be quite expensive and typically
require dedicated desktops and proper cooling to work on
problems with copious amounts of data.

This becomes a problem when looking at small island
countries such as those in the Caribbean. As opposed to first
world countries, these islands do not easily have access to
GPU desktops. There have been strides with the advent of
cloud computing platforms, such as Google Colab, which
has allowed machine learning models to be trained on these
platforms. However, when it comes to performing relevant
testing and comparison of training methods it becomes tedious
and, at times, unusable since the training of models are on a
distributed platform with usage constraints.

The aim of this study is to compare a deep learning approach
to an ensemble of traditional methods of training a classifier
to track the rate of deforestation in a Caribbean island. In
our paper we define deforestation to be a decrease in the
number of pixels that are labelled as forests in a consecutive
set of years. In this regard we trained the models on the
same desktop computer and compared the training time of
each model. Additionally, in order to ensure that the models
were performing similarly we looked at using several different
metrics but specifically the Jaccard Index. The Jaccard Index
was specifically chosen since it is a common technique used
to determine the similarity between an original ground truth
image and a predicted image [11], [17], [18], [19]. Since these
models will be tested on an unlabeled Google Earth image,
these metrics help justify the validity of each of the models
used to predict the forested areas in the image.

II. RELATED WORK

The idea of using low powered alternatives to deep learning
approaches is a problem that is still quite relevant at the present
time. This is because many developing countries around the
world still have limited access to equipment such as GPU’s
which are more easily accessible for first world countries.
Additionally, some problems have limited access to resources
which requires exploiting different attributes about the data
it is being implemented on. Take for instance the problem
of on-board semantic segmentation in the area of UAV’s for
aerial images. In this area, persons are restricted by the on-
board device they have on the drone. Exploiting the idea that
plants have a different NDVI which can be used to distinguish
between the soil and plants on a farm, as was done by [20],
[21], they used this concept to help label the images on a farm,
but they focus on the problem of distinguishing between crops,
weeds and background.

THe authors in [20] implemented the deep convolutional
encoder-decoder model Segnet [19]. They utilized an experi-
ment field with varying levels of herbicide hence they had a
row of crops alone, a row of weeds alone and a row of crops

and weeds. They trained the Segnet model on the crop only
and weed only rows and then did testing on the mixed crop and
weed plot. However, for [21] they exploited the fact that most
crops are planted in a line and utilized this idea to distinguish
between weeds and crops. They used a line detection algorithm
to determine the row of the crops, they then used the distance
of the crops and weeds from the line detected and fed this
information into a random forest algorithm to label the plants
as either weed or crops. We can see how depending on the
problem certain features about a dataset can be utilized to
help reduce the complexity of the model being used. In this
case instead of using a deep learning algorithm, a traditional
machine learning algorithm can be used instead.

Additionally [22] looks at comparing popular segmentation
algorithms such as U-Net, FCN and Fmask [12], [11], [23]
to name a few and proposed smaller put still highly accurate
models that use the concepts of depth-wise separable con-
volutions and deconvolutions to help with the segmentation
of the images used for the problems of cloud detection and
forest segmentation. We propose that you can go further and
use traditional machine learning models such as linear SVMs,
Naı̈ve Bayes and Logistic Regression.

III. ANALYSIS

A. Dataset

We first gathered images from EO-Browser [24] and specifi-
cally used the Landsat 8 USGS satellite. We selected countries
that have similar climates to the Caribbean or ensured that
the images were generally taken during the summertime since
most Caribbean islands are warm and humid. Some of the
locations from which we took images ranged from New
Zealand, Belize, Jamaica and New York. One of our goals was
to have a mixture of forested areas and urban areas. However,
since larger Caribbean islands have a larger number of forests,
a few of the training images have larger amounts of forest
labels.

The images that were used were based on bands 4,3,2 which
are full color RGB images, and we also used the Normalized
Difference Vegetation Index (NDVI) which served as our basis
for determining what we would classify as a forest and not a
forest. Using a similar approach as given in [25] we used the
NDVI to label our images with any NDVI value above 0 being
a forest and any value less than or equal to 0 to be labeled
as not a forest. Hence cities and houses were labeled as not a
forest. These NDVI images, using the threshold just described,
was then used to create the ground truth for the training and
test images.

The dataset contains 37 RGB images and 37 corresponding
NDVI images, the NDVI images were used to create the
ground truth images. Due to the input dimensions required for
the FCN model we converted the training images to patches
of size 384 x 384 pixels which gave us 3000 images. We
implemented 5-fold cross validation which resulted in using
2400 images for training and 600 images for testing for each
fold.
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Fig. 1. Grey:input, white: conv3x3 + ReLU, Green: 2x2 max pool, or-
ange:conv tranpose 2x2, blue: conv1x1 sigmoid, red: output

B. Fully Convolutional Neural Network

Because satellite images tend to be quite large, we had to
go about creating smaller patches of the images to feed into
our FCN. This involved creating patches of size 384 x 384
pixels and resizing them to 192 x 192 pixels which is based
on the approach from [13]. The FCN that we used was based
upon [12] but we changed the input size of the images to 192,
since the original size of 512 would be too computationally
expensive to train on our current GPU. The data augmentation
techniques used for training our U-net model is used from [13]
which involved using techniques such as rotation, flipping and
zooming of the images. After training the model and then
testing it on each fold we then output the predictions. This
was then fed into a script which would produce each of the
192 x 192 patches of the predicted labels of the images and
then resize them to 384 x 384.

We can see from Figure 1 the FCN model used has an
encoding part with 10 convolutions each having a kernel size
of 3 x 3 and using a Rectified Linear Unit (ReLU) activation
function. For 8 of the convolutions, they were followed by a 2
x 2 max pooling operation and dropout operation with a value
of 0.1, while for the final 2 convolutions there was no max
pooling or dropout. For the decoder section of the FCN, we
used 4 transposed convolutions with a 3 x 3 kernel, strides
of 2 x 2. The transposed convolutions are then followed by
concatenation, dropout and convolutions like the ones used
in the encoding part of the FCN. After the 4 transposed
convolutions, the output is then fed into a final convolution
with a 1 x 1 kernel with a sigmoid activation function.

C. Traditional Approaches

Next, we looked at using common machine learning algo-
rithms such as, Logistic Regression, Linear Support Vector
Machine (SVM) and Naive Bayes. Since this is a binary
classification problem we used Stochastic Gradient Descent
to optimize our objective function. Because we wanted to do
similar testing, we ensured that the images that were loaded
into the traditional models were the same sized images as the
FCN. Since the dataset can be quite large, we decided to use
“partial_fit” in our training since this allowed us to load
a portion of the dataset into memory but at the same time the
model could be trained on this partial dataset.

For the traditional models, we used input patches of size
384 x 384. However, since the models are less computationally
expensive than the FCN we do not need to resize the input.
Hence, we go about combining around a thousand patches and

TABLE I
LABEL STATISTICS FOR FOLDS

Fold Forest Labeled Non-Forest Labeled
1 83 17
2 90 10
3 68 32
4 83 17
5 84 16

then feed it into the model for one epoch, which helps reduce
the amount of training time.

For the training of the FCN and traditional models, we made
sure to record the time it took to train each model and this was
done on a desktop computer with a Nvidia TITAN RTX with
a Intel i9-9900K CPU. Additionally, we wanted to determine
if the models would be able to run on a cheaper laptop device
which involved using a Radeon R7 M260/M265 with a Intel
i7-7500U CPU. But when trying to train the FCN the laptop
was not able to train the model. However, when training the
traditional models, they were able to get results quite similar
to the results we obtained using the desktop computer. As
discussed earlier, we used a number of metrics to evaluate our
results namely, accuracy, precision, recall, specificity, F-score
and the Jaccard Index.

IV. RESULTS AND DISCUSSION

Table I shows the composition of the test-set and we can see
that the dataset is mainly composed of forests. Hence, when
looking at the results we focused on the Jaccard Index [11],
[13], [22] which is a common metric that is used for semantic
segmentation problems.

Table II shows the results after testing the different models
across the 5-folds where the numbers are the average values
across the different folds. We can see that overall, for the
Jaccard Index, the FCN model performs best. However, the
other models results are quite close to the FCN result. Fur-
thermore, if we consider the large imbalance in the dataset,
we can see that with respect to the specificity (True Negative
Rate) and the recall (True Positive Rate), that the FCN is better
at determining the forests with a recall of 97.6%. However
when it comes to detecting not forests, for example buildings,
the linear SVM tends to perform better with a specificity of
79.4%.

Table III looks at the different models and compares the
amount of storage and average training time across the 5-fold
validation. We see that the FCN requires 14.3 MB which is
significantly larger than the space required by the traditional
models. Additionally, if we were to increase the input size of
the FCN and, by extension the convolutions and transposed
convolutions, in order to achieve better results the training
time and memory required would be further increased. Hence,
a model such as the Logistic Regression model is presented as
a much more efficient solution since it requires significantly
less space on a personal computer, and it may be trained on
either a desktop or a laptop as the results show.

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)



TABLE II
PERFORMANCE RESULTS

Model Accuracy Recall Specificity Precision F-Score Jaccard Index

Fully Convolutional Neural Network 92.6 97.6 70 93.4 95.6 91.8

Logistic Regression Model (Desktop) 90.2 93.6 76.6 94 93.8 88.6

Logistic Regression Model (Laptop) 91 93.8 77.6 91.6 94 90

Linear Support Vector Machine (Desktop) 90.8 92.7 79.4 95.6 94.1 89

Linear Support Vector Machine (Laptop) 89.6 93.7 75.4 93.5 93.5 88

Naive Bayes (Desktop) 89.7 96.1 60.5 91.3 93.6 88.2

Naive Bayes (Laptop) 89.7 96.1 60.5 91.3 93.6 88.2

TABLE III
COMPUTATIONAL RESOURCE COMPARISON

Model Storage (MB) Average Training Time (Hours)

Fully Convolutional Neural Network 14.3 01:32

Logistic Regression Model (Desktop) 0.00105 00:03

Logistic Regression Model (Laptop) 0.001101 00:09

Linear Support Vector Machine (Desktop) 0.000945 00:02

Linear Support Vector Machine (Laptop) 0.0011 00:07

Naive Bayes (Desktop) 0.000645 00:02

Naive Bayes (Laptop) 0.000751 00:06

A review of the training time of the FCN model showed that
it took, on average, 1 hour and 32 minutes to train each fold
resulting in training taking around 5 hours to be completed.
Additionally, the GPU overheated resulting in the model being
stopped and restarted several times, indicating that the duration
for the exercise was longer than the reported training times.
When we compare this to the traditional machine learning
models such as the logistic regression model, we see that the
average times are 3 minutes on the desktop and 9 minutes on
the laptop which is significantly shorter.

As we can see from Figure 2 the FCN tends to perform
better than the traditional machine learning models since it is
able to better understand the smaller details in the full color
images. However, the difference with traditional methods tend
to be small as seen in Table II.

Figure 3 shows the predictions made by the logistic re-
gression models and the FCN model on a Google Earth
image taken of Trinidad in 2016. As we can see, the models
obtained similar shapes in terms of where the deforested areas
are such as major towns. We cannot however automatically
label the full color image and obtain the ground truth since
Google Earth images do not have the NDVI labels of these
islands. But when looking at the full color images against the
predictions we can see that the models are able to get a good
approximation of the non-forested areas. This can be quite
useful for Caribbean islands which do not have easy access to
Landsat images of their islands but want to have an idea of how
deforestation has been progressing over time. Our method of
using a logistic regression model is a cheap and easy solution

to implement and proves to be quite reliable.
Figure 4 indicates the percentage of pixels that are labelled

as forests for Trinidad from 2010 to 2016 using images
taken from Google maps where the images were inputted into
our different machine learning models. We can see from the
graph that the FCN detected the most amount of forests and
the logistic regression and linear SVM had similar results.
However, the Naive Bayes models method performed poorly.
Note the gradual reduction in the percentage of forested areas.

V. CONCLUSION

In this paper, we looked at comparing two different types of
methods of labelling satellite images of countries, the popular
fully convolutional neural network U-net and an ensemble
of traditional machine learning models, to label images from
Google Earth images for a Caribbean island. We saw that after
training both types of models the overall performance of the
models were quite similar but the training time of the U-net
model was significantly higher and it required significantly
more storage. These models were then used to label images
of the Caribbean Island Trinidad and it was shown that each
of the models had similar classifications with the Naive Bayes
model being the only outlier. Furthermore, because smaller
islands have either limited or no access to specialized hardware
for training complex machine learning models, using a simpler
approach that has quite similar performance results would be
more practical. For the Trinidad example we computed the
percentage of forest over time to see how deforestation was
taking place over time. We believe that this approach can be
used for periodic monitoring of the island.
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Fig. 2. From left: Full Color Image, Ground Truth Image, FCN Prediction, GPU Logistic Regression Prediction, Laptop Logistic Regression Prediction

Fig. 3. From left: Full Color Image, Fully Convolutional Network Prediction, GPU Logistic Regression Prediction, Laptop Logistic Regression Prediction

Fig. 4. Predicted percentage of forested areas for Trinidad from 2010 - 2016
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