
Using Recurrent Neural Networks to approximate
orientation with Accelerometers and Magnetometers

Akil Hosang∗, Nicholas Hosein†, Patrick Hosein∗

∗Department of Computer Science
The University of the West Indies

St. Augustine, Trinidad and Tobago
akil.hosang@my.uwi.edu, patrick.hosein@sta.uwi.edu

†Department of Computer Science
University of California

Davis, CA, USA
nhosein@ucdavis.edu

Abstract—Many smart devices possess sensors that enable
them to collect data regarding their environment and their
users’ actions. For example, gyroscopes allow smart devices to
determine the orientation. Functions such as exercise detection
can then exploit this orientation data. However, gyroscopes are
expensive and power-hungry. In contrast, accelerometers and
magnetometers are cheap and relatively energy efficient. Hence,
if we could use data accelerometers and magnetometers to
approximate orientation through computations on the device, we
can maintain the desired functionality at a lower cost. In this
paper, we benchmark several Recurrent Neural Network (RNN)
architectures that use accelerometer and magnetometer data to
approximate orientation with reasonable accuracy.

Index Terms—Recurrent Neural Network, Accelerometer,
Body Sensor, Magnetometer, Smart Devices

I. INTRODUCTION

Smart devices, such as smartphones, have become critical
and ubiquitous fixtures of everyday life in our technologically
driven society. These smart devices are often portable with
their utility predicated on the availability of charge in their
batteries. Users expect smart devices to facilitate many func-
tions and tasks. These functions and their variety influence
the rate at which a smart device’s battery is depleted [1].
Every advance in functionality elevates the expectations of
consumers of their smart devices, thereby increasing the load
placed on the battery of devices. This problem is unavoidable,
but we can endeavour to minimize it through efforts in both
software and hardware. As such, many efforts are being made
to increase the effective battery life of smart devices.

We aim to aid this effort by looking at a hardware and
software approach. Smart devices that utilize orientation and
motion-based features can do this by using MEMS (micro-
electromechanical systems) inertial measurement units (IMUs)
onboard the device, such as accelerometers, magnetometers
and gyroscopes. MEMS are described as miniature machines
with both electrical and mechanical components. These ma-
chines range greatly in size from several millimeters to one
micrometer and are composed of parts such as micro-sensors,

microprocessors, micro-actuators, units for data processing
and parts that can interact with exterior pieces. MEMS are
the machines responsible for tasks like deploying air bags,
controlling building heating and cooling systems and more
relevantly, controlling the orientation of smart devices. These
three sensors constantly complete and correct each other to
provide the smart device with a proper understanding of its
orientation. By doing this, we can use IMUs in wearables and
smart devices to provide real-time analysis of movement and
feedback for a user but we need to be aware of battery life
[2].

One approach to increasing the battery lifetime of a device
is to use larger batteries. However, the compact design of said
devices often precludes larger batteries as a sensible design
alternative. Moreover, users are likely to grow frustrated with
having to recharge their devices multiple times per week. An
alternative solution is to reduce the amount of power that a
component of the wearable device, such as the IMUs, uses to
achieve its job. Of these MEMS IMUs, gyroscopes are known
to be the most energy-hungry and expensive, as opposed to
accelerometers and magnetometers which are energy efficient
and cheap, as we see in Figures 1 and 2.

If we can derive orientation vectors using the accelerometer
and magnetometer, we can obviate the use of a gyroscope,
thereby eliminating a source of energy consumption. We
implement Recurrent Neural Networks (RNN) that map se-
quences of accelerometer and magnetometer data to sequences
of orientation vectors. In the future, after the neural network
has been heavily trained and fine-tuned, the weights of this
model can be transferred onto a small embedded device in
place of the gyroscopic sensor and then used to mimic the be-
haviour at a lower energy cost. As mentioned earlier, for smart
devices and wearables, especially those used for commercial
health monitoring, it is essential to the consumer’s quality of
life that the battery efficiency of these devices continue to be
optimized. Theoretically, omitting the used of the gyroscope
within the device and using our embedded neural network in

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

978-1-6654-2180-5/21/$31.00 ©2021 IEEE

Fig. 1. Power consumption of MEMS IMUs

Fig. 2. Data Representations and their Applied Pre-Processing Steps

its place maximises the usage of these devices making them
more practical to use and improves the user experience.

Telehealth is one area in which the energy-efficient deriva-
tion of orientation vectors is likely to be a great boon.
The commercialization of smart devices like smartphones
and watches has given more people access to their health,
such as blood pressure, heart rate, and other measurements
of physiological function. Motion is another facet of health
that can be tracked using smart devices. The sensors in
these devices can track and record motion and orientation
during physical activities. Access to this information can prove
very useful in medical service such as physical rehabilitation,
especially during the current global pandemic. Various settings
and situations (e.g., due to COVID-19) can restrict access to
medical practitioners or doctors. With people opting or requir-
ing remote access to goods and services, fitness information
can be electronically communicated to a physio-therapist who
can then assist a patient from the comfort of their own home.
We next provide related work followed by a description of the
data collection process. We then describe the Recurrent Neural
Network in detail and the methodology used to clean the data.
Finally we provide our results and conclude.

II. RELATED WORK

Cloud computing has become very popular by giving users a
high performance, low-cost environment to perform computing
tasks. In 2018, Akbar et al. [1] developed a mobile cloud hy-
brid application to leverage cloud computing. In their method,
Akbar et al. considered two mobile cloud hybrid Android
applications then executed them using a simple mobile cloud
application framework while measuring the power and band-
width consumption. From the results of this study, Akbar et
al. found that by using their technique, the hybrid applications
consumed approximately 63% less energy at the cost of 1MB
of network bandwidth.

Also, in 2018, Patonis et al. [3] aimed to provide a fusion
method for combining outputs from low-cost sensors for use
in mobile devices. This method takes data from sensors such
as an inertial accelerometer, a gyroscope and a non-inertial
magnetometer. It then combines them into an optimal three-
dimensional orientation vector output in real-time. It produces
this value through the combination of Euler angles and a
rotation matrix. This study considered the computational cost
required to run on mobile devices, and they evaluated their
fusion method’s efficiency in an augmented reality application
that was executed on an Android mobile device.

III. COLLECTED DATA

The data used in this project was collected by an android
phone mounted on the left bicep using an elastic armband.
From this accelerometer, magnetometer gyroscope and ori-
entation data were collected at 50Hz. Participants executed
ten exercises in addition to non-exercise activities, which
worked as the source of the motion data in the IMUs [4].
The orientation data is the information we use to determine a
position in 3D space and was in the format of Euler angles.
Euler angles are three angles used to describe the orientation
of a rigid body with respect to a fixed coordinate system
[5]. Other critical numbering systems for this project include
quaternions and rotation matrices.

Quaternions are a number system that extends complex
numbers. They are applied to mechanics in three-dimensional
space, typically to convey rotation. Since quaternions extend
complex numbers, this means it implements real and imaginary
numbers. A rotation matrix is a matrix used to perform
a rotation in Euclidean space, such as a rotation in two-
dimensional space through an angle. These numbering systems
become important because using Euler angles to train the
model is not the best approach to teaching the model.

IV. NEURAL NETWORK MODEL

After making transformations and using the corrected data,
a neural network accepts the input from the sensors and
produces the orientation vector that the smart device will
interpret. In this paper, we considered a RNN architecture.
The intuition behind an RNN is that the neural network
accepts input, applies weights to the input, produces an output
and then uses values from processing in the hidden layer
of the neural network for the next step of execution. This

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

basically gives context to the next step from the previous
step, which is why this model is typically used for problems
that involve time because the values from the sensors are
taken at a specific frequency [6]. Aside from vanilla RNNs,
other RNN models possess mechanisms that allow them to
recall information over longer periods as well as to discard
information as needed. To get the most accurate values from
the model, we experimented with different hyper-parameters
and architectures, altering training factors of the model and
implementing different RNN architectures such as Long Short
Term Memory Networks (LSTMs) and Gated Recurrent Unit
Networks (GRUs)

V. DATA PREPROCESSING

After parsing raw data files exported from Android and the
action boundary file containing the start and stop times of
each labeled action, a window size is determined based on the
longest average action length. The time-domain window size
is calculated to be 167 samples, which at a 50Hz sampling
rate, results in a 3.3 seconds window. Space domain sampling
is configured for θ = 5, and the window size calculated to
be 51 samples or 255of rotational movement. Non-action data
is generated by random sampling windows which share no
common elements with known action boundaries. In order
to get a comprehensive non-action set, K-means clustering
is used to remove similar non-actions, thereby increasing the
variety of non-action samples presented to the classifiers. The
total number of non-actions collected is equal to the average
number of actions within an action class, and hence all classes
have an approximately equal number of samples.

A. Orientation Alignment

In the context of action classification, the direction action
performed has no bearing on its class. An action performed
North or West are equivalent if performed identically. An
orientation alignment is performed to the Euler angle, temporal
vector and spatial vector representations. For the Euler angle
representation, the window is rotated around the world vertical
axis such that the yaw of the center sample is equal to 180.
For temporal and spatial vector representations, the window is
rotated around the vertical world axis such that the projection
of the center sample y-vector onto the horizontal world plane
is parallel to the world north vector. More intuitively, the
window is centered such that the arm is pointed northward
at the window halfway point.

B. Per-Axis Normalization

Before Principal Component Analysis (PCA) can be ap-
plied, input data needs to be appropriately normalized. Differ-
ent sensor data, such as accelerometer or gyroscope data, are
scaled differently because they are recorded in different units.
Since PCA ranks based on input variance, having one sensor
with large variance and another with low variance will result
in one sensor dominating the other. Each data representation
component is independently normalized to zero mean and unit

TABLE I
REPRESENTATION WINDOW DIMENSION AND VARIANCE AFTER PCA

Representation Width Depth %Variance
Accelerometer 167 3 90.0

Gyroscope 167 3 61.3
Accelerator+Gyroscope 167 6 87.3

Euler Angle 167 3 90.4
Temporal Vector 167 6 88.0

Spatial Vector 51 6 89.7

standard deviation using statistics collected from the train-
ing/validation data files. For Euler angle, temporal and spatial
vector representations, orientation alignment is first performed
and random windows over all training/validation data files are
collected from which Mean and Standard Deviation values
are calculated. All other representations use the Mean and
Standard Deviation over all samples of the training/validation
data files.

C. Principal Component Analysis

Though there are many methods to perform dimension
reduction. PCA is chosen for its wide use, not just in action
classification but also in other machine learning applications.
PCA uses an orthogonal transformation to map a set of
input observations to a set of linearly uncorrelated variables
called principal components. The largest principal components
account for the largest variance in the original data and hence
contains the most information. A transformation matrix is cal-
culated per representation by performing dimension reduction
over a collection of randomly selected windows across the
training/validation files. In addition to reducing the dimension
of the window data, PCA standardizes all representations to a
fixed 12 dimensions. This allows for an even comparison since
all classifiers are trained using the same number of features
for all data representations. Figure I summarizes the window
width, the number of components in a representation (depth)
and retained variance after PCA for each representation.

D. Per-Feature Normalization

Following dimension reduction, a final normalization is
performed such that all features across the training and val-
idation sets have zero mean and unit standard deviation. For
most classifiers, per-feature normalization increase learning
performance by preventing uneven contribution of features.
The per-feature normalization is calculated across all examples
in the training/validation data and later applied to the test set.

VI. METHODOLOGY

A. Data Collection and Cleaning

Firstly, sensory and orientation data was collected from a
dataset of 11 persons performing ten repetitions of 10 different
exercises recorded by a bicep mounted smartphone over a
recorded period of time. The aim of the project was to predict
accurate orientation vector values only using accelerometer
and magnetometer data, and so the values from these two

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

sensors and the Euler angle output, which is responsible for
describing orientation, were extracted from the dataset. Using
this orientation representation for training the model would
not have been optimal for learning, so the Euler angle data
was first converted into a quaternion by use of trigonometric
functions [7]. Due to the fact that quaternions utilize a complex
number system, this would have also produced inaccurate
results, so the data was then converted to a rotation matrix [8].
After transforming the orientation data into a useful format,
the magnetometer data was calibrated. This is due to the hard
and soft iron distortion the magnetometer sensor may have
experienced when the readings were taking place [9].

B. Neural Network Model

Once all the data was in a usable state, the six value
vector was fed into a simple RNN to begin training. This
architecture of neural networks was chosen because it is
important to include context for the sequence of readings from
the IMUs, which describe motions that happen in temporal
space. Without accounting for time, the network will not
fully understand the sequence of movements that make up the
motions and will not learn as expected. With varying batch
sizes, learning rates and dataset sizes, the model was trained,
and the mean squared error loss along with the values used to
obtain that loss value was recorded for further analysis.

Aside from changes in model values, different approaches
were taken to be as accurate as possible, utilizing more com-
plex RNN architectures such as the LSTM or GRU. Another
method used to increase accuracy was partitioning the data in
such a way that the model received data in a window slider
fashion. Initially, the data was given in batches with one batch
of a set size containing values from one example to another
and the following batches of the same size continuing from
after the last example of the previous batch. Using the window
slider method, the following batch takes its first example from
the second example of the previous batch. After processing the
training samples, it then applies the learned weights to foreign
testing set to compare how well the model works. This value is
then compared against the training accuracy over every epoch
to evaluate how well the model is learning.

VII. RESULTS

After testing multiple values and architectures, the loss for
the RNN is shown in TableII and for the Gated Recurrent Unit
in Table III. Note that loss was calculated using mean squared
error against the true values. A batch size of 20 was used for
all tests and the data was fed in discrete batches where no two
batches in an epoch contained the same values. The loss as a
function of number of epochs is provided in Figures 3 and 4.

After running these tests, the window slider approach to
inputting the data in the model was implemented with the
losses provided in Tables IV and V. The corresponding values
for loss as a function of number of epochs is provided in
Figures 5 and 6.

TABLE II
LOSS FROM SIMPLE RECURRENT NEURAL NETWORK

Learning Rate
0.01 0.05 0.1

Batch Size
50 0.01172036 0.00376974 0.0027762

100 0.02107552 0.01304974 0.00651864

TABLE III
LOSS FROM GATED RECURRENT UNIT

Learning Rate
0.01 0.05 0.1

Batch Size
50 0.00766621 0.00664519 0.00408696

100 0.00710135 0.00751824 0.00313041

Fig. 3. Loss from RNN using Optimal Parameters

Fig. 4. Loss from GRU using Optimal Parameters

VIII. DISCUSSION

GRU generally outperforms the LSTM and so values for
LSTM were omitted from the paper. Looking at the results
of the RNN and GRU from the first tests, using discrete

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

TABLE IV
LOSS FROM SIMPLE RNN WITH WINDOW SLIDER

Learning Rate
0.01 0.05 0.1

Batch Size
50 0.00039917 0.00040634 0.00029641
100 0.00027974 0.00035158 0.00033473

TABLE V
LOSS FROM GATED RECURRENT UNIT WITH WINDOW SLIDER

Learning Rate
0.01 0.05 0.1

Batch Size
50 0.00049255 0.00036113 0.00044662
100 0.00031506 0.00024084 0.00028324

Fig. 5. Loss from RNN using Optimal Parameters and Window Slider

Fig. 6. Loss from GRU using Optimal Parameters and Window Slider

batches, it was expected that the GRU would outperform the
RNN. This was assumed because the GRU is a more complex
architecture built on the base RNN architecture, but the results
obtained showed that the models did not seem to differ by

a significant amount. Furthermore, after implementing the
window slider method, there was a significant increase in
accuracy, decreasing the loss by approximately 90%. In the
case of processing and categorizing a motion, we observe the
motion in a continuous motion taking context from each small
movement as opposed to observing it in discrete or distinct
batches of movement. Furthermore, from the graphs showing
a loss, it was observed that there was a drastic increase in
loss. To address this, the model may have to be prematurely
ended to avoid the loss inaccuracy. Alternatively, the model
could be set to train longer, and the results can be observed if
additional training could be of benefit.

IX. CONCLUSION

We investigated whether one can decrease energy consump-
tion in a smart device by using fewer sensors together with
a Recurrent Neural Network. We showed that we could in
fact get similar performance with fewer sensors together with
a RNN. Given these results, it is shown that the model has
learned to some degree of accuracy, more so using the window
slider method. Theoretically this means that we can obtain a
model that can mimic the behaviour of the gyroscopic sensor
within a range of accuracy and thus implement an embedded
neural network that can perform the gyroscope’s function
while operating at a reduced energy cost. Once implemented as
a physical solution, the battery usage of the embedded device
should be recorded. Given that the usage is significantly lower
than the gyroscopic sensor, the model can then be retrained
with different methods to attain a more accurate model so the
device can perform its tasks efficiently. Some possible avenues
to continue the work of this project can be to implement the
Long Short Term Memory model architecture and measure its
accuracy against the Gated Recurrent Network model.

REFERENCES

[1] A. Akbar and P. R. Lewis, “The importance of granularity in multiob-
jective optimization of mobile cloud hybrid applications,” Transactions
on Emerging Telecommunications Technologies, vol. 30, no. 8, p. e3526,
2019.

[2] Q. Liu, J. Williamson, K. Li, W. Mohrman, Q. Lv, R. P. Dick, and
L. Shang, “Gazelle: Energy-efficient wearable analysis for running,” IEEE
Transactions on Mobile Computing, vol. 16, no. 9, pp. 2531–2544, 2017.

[3] P. Patonis, P. Patias, I. N. Tziavos, D. Rossikopoulos, and K. G. Margari-
tis, “A fusion method for combining low-cost imu/magnetometer outputs
for use in applications on mobile devices,” Sensors, vol. 18, no. 8, p.
2616, 2018.

[4] N. Hosein and S. Ghiasi, “Wearable sensor selection, motion represen-
tation and their effect on exercise classification,” in 2016 IEEE First
International Conference on Connected Health: Applications, Systems
and Engineering Technologies (CHASE), 2016, pp. 370–379.

[5] L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum
physics: theory and application,” Addison-Wesley, 1981.

[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. Ieee, 2013, pp. 6645–6649.

[7] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and
rotation vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[8] C. W. Wong, Introduction to mathematical physics: Methods & concepts.
OUP Oxford, 2013.

[9] K. Winer, “kriswiner,” 2021. [Online]. Avail-
able: https://github.com/kriswiner/MPU6050/wiki/Simple-and-Effective-
Magnetometer-Calibration

2021 Second International Conference on Intelligent Data Science Technologies and Applications (IDSTA)

