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Abstract

Summarization techniques have traditionally achieved good performance results when

summarizing sentences and documents. However, their application to instant messaging

notifications have not been thoroughly examined. This research outlines a model for sum-

marizing instant messages, through the use of text and the Emoji Unicode Characterset, for

applications where screen space is limited (e.g, in smartwatches and smart bracelets). The

proposed model uses a Greedy N -gram token replacement method. This method produced

high quality results and was evaluated using human participants. We found that there is a

decrease in the time taken to read the summarized message when compared with the original

message.

Keywords Textual summarization · Instant message · Emoji · Machine learning ·

Natural language processing

1 Introduction

Natural Language Processing (NLP) is one of the main computational fields in modern day

artificial intelligence. It is an area supported by Data Science, Computer Science and Lin-

guistics and mainly seeks to close the gap between computing systems and human language.

NLP has made its way to most digital goods and services in modern day applications. NLP
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techniques are used in Search Engine systems [4], Machine Translation [11], Speech Recog-

nition [6, 13] and Sentiment Analysis [10, 14] to name a few. The ongoing symbiotic trend

with regards to the increased electronic information consumption and the production of data

by end-users using these electronic systems means that the field of NLP is a thriving area

of continued research and development with new resources being created daily.

Textual data is constantly being shared between users or stored in the cloud depending

on the application. Every day 5.5 billion cellular text messages are exchanged [3], 500

million tweets are created per day as of 2013 [21] and the average instant messaging service

consumer sends 72 messages per day [20].

An important and challenging area of NLP is the use of textual summarization. The

end goal of summarization techniques is, given an original sequence of words/characters

(typically a sentence or paragraph), produce a condensed version of the original sequence

that satisfies a set of linguistic characteristics. A similarity score between the original and

shortened sequence can be used to quantify performance. Textual summarization can be

split into two main categories, Extractive and Abstractive Summarization. Both types of

summarization were key points in this research and will be explored thoroughly in a later

section. Textual summarization is mainly implemented in the fields of customer review

mining [7], headline generation [2, 18] and extraction of the main points of large documents

like blogs or research papers [1].

Simultaneously, with the rise of increased use of social media services which are heavily

dependent on text, there has been an increase in the use of a set of unicode characters

classified as Emojis. Emojis are pictographic representations, that are typically displayed as

one character, of a given phrase or word and can be interpreted differently given the context

of usage. Emojis represent a wide array of items, from traditional emoticons to locations. It

was found that Emojis infer deeper meanings into conversations [9] in addition to emotions.

Notification bars on mobile phones typically only convey part of a received message.

The same can be said about smart watches. If a lengthy message is received, the message

is normally split and concatenated with “...” depending on the screen width of the device.

This can be viewed as tedious for the end user as it requires them to further expand or open

the message fully to view its contents. This problem can be exacerbated as this problem is

repeated throughout the day. This paper explores a solution to the above problem by using

textual summarization techniques to condense incoming text messages into shorter versions

through the use of emojis.

The remainder of this paper is organized as follows. Section 2 serves as a high level defi-

nition of the problem, Section 3 looks at existing research, firstly around the Unicode Emoji

Characterset in modern day communication and then existing Summarization techniques,

Section 4 looks at the proposed method with an Example, Section 5 looks at the results

obtained with subjective human testing and Section 6 discusses the results.

2 Problem definition

Consider a scenario where an end user of a mobile instant messaging service, such as What-

sApp or iMessage, is in a high focus situation such as driving an automobile or attending a

university lecture. In such scenarios, the time spent on the task at hand by the end user is

critical. This end user may also have a smart wearable such as a bracelet or smartwatch that

has a digital display to which message notifications are sent.
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Now consider that a message is sent to the end-user from one of their contacts. The

end-user, upon receiving the notification, will have to read the notification on their smart

wearable device and then make a personal judgement call on whether or not they have to

open the full message on their mobile phone. This personal judgement call is assumed to

be dependent on two main factors: the contact sending the message and the amount of the

message that is visible on the screen of the smart wearable device. Typically the length

of the message may be too long to be condensed into the display of the wearable and so

the end user will default to opening the message fully to read and interpret the message.

If the message is not important, this process is inefficient in terms of the high focus task

at hand. Had the end-user known the context of the message, they would have opened the

entire message at a later time. This then calls for a method that minimizes the read time and

interpretation time for a given message.

To express this mathematically, let an incoming message be denoted by a vector X̄ so that

each word is a element token separated by a white space character. We assume that the vector

X̄ is of size N so that X̄ = [X0, X1, . . . , XN ]. It is assumed that read time and interpret time

is proportional to the length of the message and the context of the message. Therefore, the

problem then becomes to create a summarized representation of the original sentence, Ȳ , so

that some length and similarity constraints are considered. The vector Ȳ of size M is given

by Ȳ = [Y0, Y1, . . . , YM ] The individual tokens of X̄ and Ȳ can be represented using either

a one hot encoding method of the entire vocabulary, or a N -dimensional context vector

of that word. Regardless of the representation, we would like M ≪ N . We would like to

maximize the similarity between both sentences, Sim(X̄, Ȳ ), so that the original context is

not lost in the summarized version. In addition to a reduction in the required screen space,

the decreased message length will lead to decreased reading and interpretation times.

3 Previous research

3.1 Textual summarization

The research area of textual summarization has been thriving in recent years due to the

increased use of social media networks and other internet based services. The area of sum-

marization can be split into two main areas, Extractive and Abstractive summarization.

Extractive summarization (ES) is the condensing of an original text sequence so that the

summary consists only of extracted content of the original text [22]. It is any means of

extracting certain words, phrases or paragraphs from the original text. Early techniques

of ES involve assigning certain scores associated with each input sentence or document.

Extractive Summarization methods can also be divided into unsupervised and supervised

methods. Some common word level features [12] that are used in summarization are:

Keyword Features: These are used to identify important areas of a sentence. Tradi-

tionally portions of text that use keywords are most likely to be included in the final

summary.

Title Word Features: These utilize the notion that phrases or sentences in a document

that contains the title words have a higher chance to contribute to the summary.

Cue phrase features: Cue phrases (e.g., “because”, “summary”) are used to extract as it

is assumed that these phrases indicate overall document flow.

While research into summarization with Emojis are in its infancy, there is continuous

work into textual based summarization. Previous work by [16] proposed an ES method that
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uses frequency and position features of the words along with the triangular membership

function to generate scores. The sentences with the higher scores are included in the sum-

mary. An ES method proposed by [8] uses word vector embedding of the sentences of the

abstractly summarized and original text in training a neural network. The neural network

assigns a score to each sentence of the original text and then a selection of the highest

scoring sentences are used in creating an Extractive summary.

3.2 Abstractive summarization

Abstractive summarization (AS) is a technique in which a summary is generated through

novel words, phrases or sentences rather then extracting specific parts of sentences as in

Extractive summarization. This generation is done by creating an internal representation of

a source document, by analysing features from the source document through deep analysis

and by reasoning about the semantic and context.

Current advances of Abstractive summarization are due to Deep Neural Networks. An

LSTM-CNN (Long Short Term-Convolutional Neural Network) approach was proposed

by [17]. This network uses a CNN to encode words in a sentence and then uses a LSTM

network to decode the sequence of encodings into a summary. Promising results was demon-

strated through the use of generative adversarial networks (GANs) by [15] which uses an

LSTM encoder-decoder model with attention.

Generation of long and short Abstractive summaries were also evaluated by [23]. This

study used various model architectures as well as human judgement in evaluating Abstrac-

tive summaries. They found that traditional summarization scores do not correlate well with

human judgement. While the models achieve higher ROGUE (Recall-Oriented Understudy

for Gisting Evaluation) scores, they do not surpass the baseline when evaluated by humans.

4 Proposedmethod of summarization

This section details the proposed method of summarizing instant messages using a method

that is based on Dense Embedding Representation of N -Gram words and its relation to

Emojis and their keywords.

4.1 N -gram token replacement method

The overall flow of this method is defined in Fig. 1. This process outlines some key

steps to be followed. Given an input sentence, the sentence is split up into tokens where

each word is a token. These tokens are then parsed and extracted based on if they are

critical in adding context to the sentence. The set of tokens is then used to create a set

of N -gram representations of the extracted tokens. Each of these tokens are then com-

pared to another collection of tokens referring to a set of Emojis and the Emoji with

the minimal Mean Squared Error (MSE) is selected. This entire process is discussed in

more detail later. For the remainder of this paper, this method will be referred to as

Method 1.

Let X̄ be an input sentence to be summarized, with an example shown below. This

example will be used as a basis for explaining the overall summarization process.

X̄ = “can we go to the beach take my car ′′ (1)
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This input sentence is then converted to a set of tokens defined by the whitespace character.

Let this be represented by X̄T oken as follows:

X̄Token = [“can′′, “we′′, “go′′, “to′′, “the′′, “beach′′, “take′′, “my′′, “car ′′] (2)

Upon completing tokenization, the first core problem can be seen. It involves a method of

extracting the important words from a given sentence. To do this, a Part-of-Speech Tagger

was used.

A pre-trained greedy average perceptron tagger was used as the part-of-speech tagger

at this stage of the model. The selected tagger, from the NLTK package, was trained on a

large corpus of data from the Wall Street Journal dataset. While the NLTK package is more

computationally expensive, it is more accurate than other publicly available pre-trained per-

ceptron taggers. We can now apply the average perceptron tagger to the sequence of tokens

X̄Token. For each token now there should be a corresponding part of speech associated with

that token. Let this be represented by X̄POS. For each element of X̄POS, we now have the

original word at index 0 and the tagged part of speech at the index 1. The complete tagset

of words can be found in the NLTK documentation.

X̄POS = [(‘can′, ‘MD′), (‘we′, ‘PRP ′), (‘go′, ‘V B ′), (‘to′, ‘T O ′),

(‘the′, ‘DT ′), (‘beach′, ‘NN ′), (‘take′, ‘V B ′),

(‘my′, ‘PRP ′), (‘car ′, ‘NN ′)]

(3)

We then assume that specific words with appropriate parts of speech convey the core

meaning of the original sentence. The words selected are all forms of Nouns, all forms of

Verbs, all forms of Adjectives and all Adverbs. After examining the tags of X̄POS, words

that do not meet this criteria are dropped from the sentence. Let the new representation be

X̄Ext

X̄Ext = [‘go′, ‘beach′, ‘take′, ‘car ′] (4)

The next step is creating an equivalent unigram, bigram and trigram representation. This

will be referred to as an N -gram representation from now on. This is done so that words

with similar meaning that are next to each will have a chance to be represented together. An

example of this would be considering the words “fast”, “car” as a single representation of

“fast car”. Doing this then creates a collection of N -gram tokens as defined by Gram.

Gram = [[(‘go′), (‘beach′), (‘take′), (‘car ′)], – unigram representation

[(‘go′, ‘beach′), (‘beach′, ‘take′), (‘take′, ‘car ′)]– bigram representation

[(‘go′, ‘beach′, ‘take′), (‘beach′, ‘take′, ‘car ′)]]– trigram representation

(5)

We now have a collection of N -gram tokens, as defined by Gram. The problem then

becomes creating a numerical representation of these tokens. To create this representation,

a pre-trained model of Word2Vec [5] was used. Let the Word2Vec representation of a given

word w be represented by:

Vector Representaion = word2V ec[w] (6)

Fig. 1 Flow diagram of the N -gram token replacement Method
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Table 1 Example Emoji and Keywords before word2Vec Representation

Emoji Keywords

U+1F600 keyword1, keyword2

U+1F603 keyword3, keyword4, keyword5

U+1F604 keyword6, keyword1, keyword7

A unique result of using word2Vec is that the vector representation of different words can

be algebraically formulated together to generate a unique result. We can then exploit this

and create unique vector representations for each token within each N -gram representation.

Therefore the function tokenVec is applied to each index of each N -gram representation.

tokenVec(tokenindex) =
∑

all j

word2V ec[wj ] (7)

where j is the j th element in the token. Applying this operation to the first element of the

unigram representation would be equivalent to: word2V ec[‘go′]. while the first element of

the bigram representation would be:

word2V ec[‘go′] + word2V ec[‘beach′] (8)

while the first element of the trigram representation would be

word2V ec[‘go′] + word2V ec[‘beach′] + word2V ec[‘take′] (9)

We now have complete vector representations for all N -gram tokens. The next step would

be creating a vector representation for the Emoji characterset so that algebraic methods can

be applied with the vector representations of the tokens and the Emoji vector representation.

4.2 Vector representation of Emojis

A Kaggle dataset [19], by the name of EmojiNet, consists of keywords and labels for each

Emoji other than the ones provided by the official Unicode website. The scraped dataset

from the Unicode website and this EmojiNet dataset was joined on the basis of the Emoji

Unicode. The keywords from EmojiNet and the description from the Unicode website were

joined and a definite set of words for each Emoji representation was created. All duplicates

within these words were removed so that each emoji had a concise set of words describing

them. Table 1 shows an example of this merged dataset with the each Emoji having a set of

keywords.

Each of these set of keywords was then converted to word2Vec representation so that

each Emoji has an array of 300 dimensions as its rows and the number of keywords as its

columns for that given emoji. Table 2 shows the same emojis but with a vectorized keyword

representation instead. This method of representation was used for the remainder of this

study.

We now have a collection of the vectorized N -gram representations and also a collection

of vectors describing emojis as detailed in Table 2. For each vectorized token in the N -

gram representations, the mean squared error between that token and each keyword from

the vectorized keywords is calculated and averaged over the entire array for that emoji. This

process is done for all emojis. The resultant array is then sorted in ascending order and only

the N/2 remaining errors are averaged to create an error score for that emoji. This process

is illustrated in Algorithm 1
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Table 2 Example Emoji and Keywords after word2Vec Representation

Emoji Vectorized Keywords

U+1F600 Array of Dimension 300x2

U+1F603 Array of Dimension 300x3

U+1F604 Array of Dimension 300x3

The emoji with the minimum error for that corresponding keyword is then chosen as

the prospective replacement for that token. We then have a collection of error values as

shown by Ê, a collection of prospective emoji representations (Fig. 2), and a collection

of previous N -gram representations, given by Gram. Ê is then updated again by averag-

ing the error value by the number of words in each token used to create that error and

given in (10).

Ê = [[(0.0188), (0.182), (0.0353), (0.0)], – unigram errors

[(0.01765), (0.183), (0.0082)]– bigram errors

[(0.0232), (0.175)]]– trigram errors

(10)

The problem then becomes replacing tokens with the prospective emoji based on the

error values. In this scenario we utilize a greedy approach, where Ê is scanned and the the

token with the minimal error value is replaced with the prospective emoji. All tokens are

Fig. 2 Prospective Emojis based for the N-gram Model
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then updated to exclude any tokens that are related to the replaced token. Therefore Gram

and Ê will then become:

Gram = [[(′go′), (′beach′), (′take′)], – unigram tokens

[(′go′,′ beach′), (′beach′,′ take′)]– bigram tokens

[(′go′,′ beach′,′ take′)]]– trigram tokens (11)

Ê = [[(0.0188), (0.182), (0.0353)], – unigram errors

[(0.01765), (0.183)]– bigram errors

[(0.0232)]]– trigram errors (12)

This process is repeated until some threshold is met so that a certain proportion ρ of

the sentence is converted to an Emoji representation. The replaced tokens and non replaced

tokens are then reconstructed to form a final sentence. Figure 3 shows this final reconstruc-

tion, with ρ = 0.5, meaning that only half of the tokens will be converted into an emoji

representation.

5 Testing

The proposed model does not have a set of labelled output to compare against and so a sub-

jective test using Human participants was used. The key values measured are the time taken

to read a summarized message and the time taken to interpret the context of the message.

A sample of 10 people were selected to look at a combination of 10 sentences. The 10

sentences consisted of 5 un-summarized messages and 5 summarized messages using the

proposed method. The times taken to read and interpret each sentence was then measured.

Let read time be denoted by Tr and interpret time be Ti . The detailed methodology was as

follows:

1. The collection of 10 sentences is shuffled.

2. The participant simultaneously starts the timer and begins reading the sentence.

3. The participant notes the elapsed time upon completion of reading the sentence.

4. The participant notes the elapsed time upon successfully interpreting the context of the

sentence.

5. Repeat the above process for each of the participants.

6 Discussion of results and conclusions

The times across all participants for reading and summarizing the sentences were averaged

based on the sentences. This is shown in Table 3. The average read time for the unsumma-

rized sentences was 143.8 ms. It was noted that for the full unsummarized sentences, all

participants noted that the read time and interpretation time are the same.

The read times of the summarized sentences had an average of 64.2ms. The average

interpretation times had an average of 108.4ms. A Wilcoxon signed-rank test was used to

Fig. 3 Final summarized version of example
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Table 3 Summary of Read Time and Interpretation Time

Sentence Read Time/ms Interpretation Time/ms

UnSummarized1 175 Same as Read Time

UnSummarized2 134 Same as Read Time

UnSummarized3 115 Same as Read Time

UnSummarized4 141 Same as Read Time

UnSummarized5 154 Same as Read Time

Summarized1 54 119

Summarized2 79 110

Summarized3 65 120

Summarized4 59 70

Summarized5 64 123

compare the read times for unsummarized and summarized sentences as well as to compare

the interpret times for these sentences. Based on the outcomes of this statistical test, it

was found that the difference in read times are statistically significant. However, it was

found that the difference in the Interpretation times between unsummarized and summarized

sentences were not statistically significant.

This research explored the concept of textual summarizing utilizing the Emoji Unicode

Characterset and its application to instant messaging services. The problem was defined as

shortening an input vector to a summarized representation so that the length of the summa-

rized representation is less than the input vector, and that the similarity between both input

and output are maximized.

A core concept of the proposed method was the vector embedding representation of

Emojis. It was found that representing the Emojis as an algebraic sum of their respec-

tive keywords was quite efficient for this task. The keywords were extracted through web

scraping the official Unicode website and using the EmojiNet database. A part of speech

tagger was also used in the form of a pre-trained greedy average perceptron tagger, from

the NLTK package. The method of selecting emoji replacement for N -gram tokens was a

greedy approach.

Human testing on the proposed model was also conducted, with 10 participants evaluat-

ing 10 sentences, 5 of which are summarized and 5 unsummarized. Their read and interpret

times for each sentence were noted and aggregated. It was found that the read time for sen-

tences summarized less than the read time of unsummarized sentences. This was further

confirmed through the use of a Wilcoxon rank sum test.

The interpretation times for both the unsummarized and summarized sentences were also

examined. It was found that the interpretation times, while being less on average for the

summarized version, were not statistically different. It was found that the true location shift

is equal to zero at an α = 0.05 level, i.e. the medians of the interpretation time for the

unsummarized and summarized sentences are similar.

Future work in this area should focus on exploring various optimization methods of

selecting Emoji replacements for N -gram tokens for the proposed model. Investigation of a

global approach may have better results in terms of minimizing the error but may drive com-

putational time upwards. The difference in interpretation times between the unsummarized

and summarized sentences should also be further investigated.
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