
Premium Rate Services Fraud Detection
Mariella Rivas*, Richard Roach**, Patrick Hosein*

The University of the West Indies, St. Augustine, Trinidad and Tobago*
Telecommunications Services of Trinidad and Tobago, Port of Spain, Trinidad and Tobago**

mariellarivas93@hotmail.com, rroach@tstt.co.tt, patrick.hosein@sta.uwi.edu

Abstract—Premium Rate Services (PRS) destination fraud
occurs when telephone calls are made to high-cost (premium)
destinations through fraudulent means. Early detection and
termination of such calls can significantly reduce the cost they
incur. We investigate various features of such calls to determine
which can be used to quickly predict and terminate them. This
is achieved through feature selection and clustering analyses
followed by fraud detection using a Classification and Regres-
sion Tree (CART) model. Additionally, we propose the use of
costs/benefits to evaluate the model’s performance through the
consideration of an adjusted decision tree cost function at the
training level. This approach is compared to the traditional
decision tree to highlight its advantages.

Index Terms—Fraud Detection, Machine Learning, Network
Management, Premium Rate Destination

I. INTRODUCTION

Premium Rate Services (PRS) Destination Fraud arises
from the fraudulent occurrences of outgoing calls from a
telecommunication network to high-cost destinations. Such
fraud can result in significant revenue leakage and hence
early detection and prevention is important [1], [2]. We use a
case of a telecommunication company to illustrate a proposed
approach for early detection and termination of such calls.

Profiling fraud is time-consuming and it is difficult to detect
in advance certain PRS destinations, which in turn increases
the associated risk of financial loss. In fact, companies are
often times made aware of suspicious/fraudulent activities by
account managers and customers after the impact has reached
their bills. Moreover, they must absorb these losses in an effort
to maintain their customer base. We present a model that can
detect PRS fraud more proactively, so as to reduce the high
costs incurred to the company and its customers.

This paper first outlines the steps taken to achieve the
desired goal by using historical fraud cases to determine the
most influential call level features that the company may use
to better identify PRS in the future. This step, referred to as
feature selection, will be particularly useful in ensuring that
the most important indicators of PRS are indeed observed
when attempting to identify a PRS case. It will also reduce
the time taken for a model to flag an activity as possible
fraud by protecting the model from being over-fitted with
unnecessary features. We then perform a cluster analysis using
the selected features, then describe two prediction methods
(traditional approach and cost-sensitive approach) and apply
and evaluate these on a real dataset.

II. RELATED WORK AND CONTRIBUTIONS

Several papers have been written on telecommunication
fraud detection (see [3] for an overview) but the situation
varies by country. Popular, successful approaches to this issue
have explored the application of several machine learning
algorithms to a variety of features such as telephone numbers,
call times, call duration, called networks to detect fraudulent
call activities (for instance, [4] [5] [6] and [7]). Accounting
for the costs/benefits related to fraud detection is also of high
value, as made evident in [8], which focused on the design
of Key Performance Indicators (KPI) to optimize revenue
assurance and manage fraud. The authors in [9] and [10]
also highlighted the advantages of considering costs/benefits
in classification, by applying cost-sensitive machine learning
methods to medical data.

We focus on the case of a Small Island Developing State
with a sophisticated telecommunication infrastructure but with
limited resources to monitor and manage fraud. Over the last
two decades, the issue of telecommunication fraud has sparked
international concern [1] and has recently become a more seri-
ous issue especially for developing countries [2]. In this paper,
we initially conduct feature selection analysis to outline the
most influential call features to be extracted and used in fraud
detection. This step was intended to allow more efficient model
training, saving both time and financial resources, as illustrated
in [11] and [12]. We then perform Ward’s Hierarchical Divisive
Clustering (WHDC) algorithm on a sample of the data, using
the selected features to further reveal any underlying patterns
in the data that may have assisted in model training. The
WHDC method was specifically chosen due to its efficiency
regarding large datasets. The use of hierarchical agglomerative
clustering in telecommunication fraud detection is also out-
lined in [7]. Next we trained and tested a CART decision tree
and a radial-kernel Support Vector Machine (SVM) to detect
fraud, given values for the selected call features. Similar work
involving decision trees is presented in [4], [13] and [14],
while [5] and [15] explored SVM approaches to the problem.
Lastly, we explored a cost-sensitive CART decision tree to
account for costs/benefits associated with different outcomes in
fraud detection and compared this approach to the traditional
approach aforementioned. Cost-based analyses have been less
popular in the telecommunication industry but the approach
has been successfully applied in other areas as detailed in
[16], [17],[9], and [10].
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TABLE I
LIST OF CALL LEVEL INPUT VARIABLES

Variable Name Type Example

ACCOUNT NO Numerical 2.867409e+13

SERV NO Numerical 224145067

DIALLING NO Numerical 224145067

DIALLED NUMBER Numerical 6228332367

CALL DATE Date 2018-06-03

08:50:30.4

ACTUAL DURATION Numerical 0.2

IM CHARGE TOTAL Numerical 0.8

LEAD DIALED NUMBER Numerical 18686718140

LEAD CallDate Date 2018-06-05

14:07:07

CallTime Plus Duration Date 2018-06-03

08:50:42.4

groups consecutive dialed no Numerical 542

NumberOfCalls PerDialled Daily Numerical 5

ServNo NoOfDailyCalls ToDest Numerical 3

ServNo DailyRev ToDest Numerical 13.60

ServNo DailyMOUs ToDest Numerical 11.25

NumberOfCalls PerGrouped Numerical 130414

ServNo NoOfDailyCalls ToDest avg Numerical 8.02

ServNo DailyRev ToDest avg Numerical 14.08

ServNo DailyMOUs ToDest avg Numerical 4.97

Consecutive dialed no with non Numerical 1024

matching duration

TOS CAT Categorical N

DayOfWeek Numerical 6

TimeOfDay Numerical 1

III. DATA DESCRIPTION

The data examined in this analysis consists of 34 explana-
tory (input) call level variables for individual instances of
PRS fraud over a two-year period. However, we found that
11 variables (also called features or attributes) had several
missing values and so the number of variables was reduced
to 23 from 34. These 23 variables are outlined in Table
I. Together this gave a rich sample dataset of call level
information for 199,771 fraudulent and non-fraudulent PRS
calls. The occurrence of PRS fraud was taken as a binary
response (output) variable with occurrence being denoted by
1 and non-occurrence denoted by 0. For the purposes of the
initial feature selection analysis and model development, we
used all available cases. The sampled data was split 75%-
25% between training and testing respectively. However, a
representative random sample of 1,000 cases was employed
for the cluster analysis stage, to provide ease of visualization.

IV. FEATURE SELECTION

All mathematical and statistical work conducted for this
analysis was done using the R Statistical Software. After
removing missing data, the 4 non-numerical variables were
easily converted to their numerical equivalents to facilitate
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Fig. 1. Information Gain of each Feature

easier, more accurate analysis. Next, the FSelector R
library was used to fundamentally assess the information gain
of the input variables. Information gain measures the reduction
in entropy by splitting the dataset based on given values of a
random variable, and is commonly used in feature selection
and construction of decision trees. A variable’s information
gain usually lies between 0 and 1 inclusive, with a higher
value being preferred, as this minimizes entropy and aids in
effective classification. The information gain achieved for each
input variable is provided in Figure 1.

After this, the caret and mlbench R libraries were
used to calculate the correlation between each pair of input
variables. This allows a better understanding of the relation-
ships between the variables and aids in the identification
of redundancies. A variable was considered redundant if its
correlation to another variable was higher than 0.80. Feature
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TABLE II
HIGHLY CORRELATED FEATURE PAIRS

Feature 1 Feature 2 Corr

SERV NO (abbreviated SN) DIALLING NO 1.00

SN ToDest SN DailyMOUs ToDest 0.84

SN DailyRev ToDest SN DailyRev ToDest avg 0.85

SN DailyMOUs ToDest SN DailyMOUs ToDest avg 0.86

SN NoOfDailyCalls ToDest NumberOfCalls PerDialled Daily 0.98

SN NoOfDailyCalls ToDest SN NoOfDailyCalls ToDest avg 0.89

Consecutive dialed no with NumberOfCalls PerGrouped 0.81

non matching duration

pairs with high correlation values are provided in Table II.
From Figure 1, it is evident that the date of occurrence,

dialling and dialled numbers, and variables relating to frequen-
cies of calls made are the most critical features in determining
a fraudulent PRS call. They are considered highly influential,
whereas the remaining variables are only fairly influential.

Moreover, a closer examination of the results in Table II
shows that a server number’s daily minutes of use (MOUs) to
a destination is redundant to it’s daily revenue to a destination,
and so on. In fact, examining column 2 of Table II alongside
the results in Figure 1 led to 5 of the 23 input variables being
considered redundant and therefore withheld from further
analyses. This leaves 18 variables to be selected for inclusion
in our analyses, ACCOUNT NO, SERV NO, DIALLING NO,
DIALLED NO, CALL DATE, ACTUAL DURATION, Call-
Time Plus Duration, IM CHARGE TOTAL, LEAD DIALED NO,
groups consecutive dialed no, NumberOfCalls PerDialled Daily,
NumberOfCalls PerGrouped, ServNo NoOfDailyCalls ToDest avg,
ServNo DailyRev ToDest avg, ServNo DailyMOUs ToDest avg,
DayOfWeek, TimeOfDay and TOS CAT.

V. CLUSTER ANALYSIS

Next we provide a clustering analysis on the selected 18
features for both PRS fraud and non-fraud cases. This will
allow a more detailed understanding of how each feature
interacts with the response variable of fraud occurrence and set
a solid foundation for the development of a model that detects
PRS fraud more proactively and efficiently. To conduct this
analysis, the original dataset was truncated to a representative
random sample of 1,000 PRS calls in an effort to better
visualize results. In this sample, 787 calls were non-fraud
while 213 of them were fraudulent. The binary dependant
variable (occurrence of fraud) was withheld from the algorithm
as necessary, and numerical equivalents deduced earlier for
date and categorical variables were used as replacement values
in the data to be examined.

We use Ward’s Hierarchical Divisive Clustering method
with Euclidean distances under complete linkage. Theoreti-
cally, this method builds a top-down tree-like hierarchy of

Fig. 2. Cluster Plot of Sampled Individual PRS Calls

clusters (data groups) by beginning with all the data points
in one initial cluster and splitting clusters recursively until
each data point has been assigned to a single cluster. It is
particularly useful for large datasets.

Different R packages were used to apply this method, each
generating different visualizations that broadened perspective
and facilitated better interpretation of the results. Firstly,
the cluster R library was used to calculate the divisive
coefficient, which measures the amount of clustering structure
found, with values close to 1 being preferable. In our case,
it was satisfactorily found to be 0.97. The complete linkage
dendrogram on indivdual data points and the corresponding
silhouette plot were also visualized using this library. Addi-
tionally, the factoextra R library was used to create a
mapping of individual data points within clusters, and produce
an elbow plot to confirm a suitable number of clusters for the
data.The cluster plot is provided for reference in 2. It shows
a mapping of the data into 2 distinct clusters, one larger than
the other. This coincides with the separation of the clusters as
generated by the other visualization methods used, as well as
the actual split of the calls into fraud and non-fraud categories.
Thus, we can safely deduce that it is efficient to categorize PRS
calls into either of 2 groups, which is desirable as the response
variable of fraud occurrence is, intuitively,indeed binary.

VI. FRAUD DETECTION METHOD

We investigated two basic supervised learning approaches
so as to determine the accuracy of each model. After the
conversion of the non-numerical input variables, the dataset
of 199,771 cases was partitioned 75% - 25% as a training set
and testing set respectively. This resulted in data for 149,828
PRS calls to be used to train the models, and 49,943 calls to
be used for testing for the 18 input variables being considered.
Two simple supervised learning models were evaluated, a
classification and regression decision tree (CART DT) and
a radial-kernel Support Vector Machine (SVM). The CART
DT was chosen due to its transparent, comprehensive nature
and its ability to provide the researcher with ease of use.
The SVM approach was also selected due to its proven
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TABLE III
CONFUSION MATRIX FOR CART DT

Predicted

Actual
0 1

0 41098 2511

1 2634 3700

TABLE IV
CONFUSION MATRIX FOR SVM

Predicted

Actual
0 1

0 35850 4496

1 5842 3755

power in addressing classification and prediction problems.
The Decision Tree for the CART model is shown in Figure
3. It is important to note that such visualizations were not
available for the SVM due to its more complex nature.

Looking at the decision tree in Figure 3 suggests the base
node of the tree is call date and time, implying that this is the
most influential call variable in initially separating PRS calls
into fraud or non-fraud groups. Its relationship with the other
input variables to achieve such categorization is shown at the
middle to lower nodes of the tree. The probabilities in darker
blue represent the outcome of a PRS call being fraudulent,
given the course through the nodes to arrive at the particular
outcome. Those in lighter blue represent the outcome of a PRS
call being non-fraudulent.

Following training, both models were employed to predict
fraud outcomes for the test set in order to assess their pre-
dictive abilities. Firstly, the confusion matrix of each model
was constructed (shown in Tables III and IV). The confusion
matrix for the CART DT indicates that the model made
accurate predictions for 44,798 out of the 49,943 test cases,
but mis-classified 5,145 cases. This resulted in a predictive
accuracy of the model being expected to predict PRS fraud
correctly 89.7% of the time. The area under the decision
tree’s Receiver Operating Characteristic (ROC) Curve, called
its AUC, was found to be 0.91. Together with the model’s
predictive accuracy, this implies that the CART DT performs
satisfactorily well, but not without room for improvement.

On the other hand, the SVM method produced a confusion
matrix showing correct predictions for 39,605 of the test
cases and 10,338 mis-classified cases. This gave a predictive
accuracy of 79.3% for the model, which is fair but noticeably
lower than that of the CART DT. The SVM’s AUC value
associated with its ROC curve was also lower than the CART
DT’s, with a value of 0.84. Generally, when compared, the
CART DT seems to be more accurate in predicting fraud
outcomes for given PRS call data. However, both models can
be subjected to further tuning and improvement of their fit and
predictive abilities.

Note that in fraud detection we have two types of errors,

False Positives and False Negatives. In the above analysis
the accuracy was determined based on the assumption that
the samples were correctly tagged. If a call was tagged as
fraudulent but after further investigation was found not to
be so then that tag would be removed. Therefore we believe
that fraudulent tags would typically be correct. However, if a
fraudulent call was missed then its tag would continue to be
incorrect. The prediction algorithm would potentially pick this
case up as fraudulent but later this would be listed as being
mis-classified. With time this problem will be reduced because
further investigation would be performed on the flagged calls
and hence those that were missed should be captured.

VII. COST SENSITIVE CLASSIFICATION

In the above analysis the objective is to minimize error
rate and false positive errors are treated the same as false
negative errors. However this is not the case here. If a false
positive error is made then a call may be incorrectly terminated
resulting in poor service to the customer. On the other hand, if
a false negative error is made then this can result in significant
financial loss to the company. In this section we assign costs
associated with each outcome of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN)
and then make predictions with the objective of minimizing
total cost (as opposed to minimizing error).

Let us denote the outcome probabilities by
Ptp, Ptn, Pfp, Pfn with associated costs of these outcomes
being Ctp, Ctn, Cfp, Cfn. For a given model the expected
cost of the outcomes is given by

C̄ = PtpCtp + PtnCtn + PfpCfp + PfnCfn (1)

The objective is to provide a classifier that minimizes C̄. Using
the fact that Ptp = 1−Pfn and Ptn = 1−Pfp we can rewrite
this as

C̄ = (Cfn − Ctp)

{
1 +

{
Pfn + Pfp

Cfp − Ctn

Cfn − Ctp

}}
(2)

Note that we can ignore constant terms and so this is equivalent
to finding the classifier that minimizes Pfn + ηPfp where

η =
Cfp − Ctn

Cfn − Ctp

is the cost associated with a false positive and the cost of a
false negative is 1. Note that, since the cost of errors are likely
to be greater than the cost of a correct prediction, then η ≥ 0.

Let us consider the problem at hand. A false positive error
occurs when one incorrectly predicts fraud (and potentially
aborts a call resulting in a displeased customer) but eventu-
ally further investigation would have identified that this was
incorrect. On the other hand a false negative error results
in a fraudulent call going unnoticed and this could lead to
significant losses. We can consider the cost of true predictions
to be zero. If, for example, the cost of a false negative is
10 times the cost of a false positive (with correct predictions
having zero cost) then η = 0.1.

To illustrate the approach, a cost-sensitive CART DT model
was trained in a similar manner to the traditional CART DT
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Fig. 3. Decision Tree for the CART Model

TABLE V
CONFUSION MATRIX FOR THE COST SENSITIVE CART DT

Predicted

Actual
0 1

0 38681 1125

1 6640 3497

presented above but incorporating costs with η = 0.1. The
resulting tree is shown in Figure 4. Note that branching is
performed to provide more false positive errors than false
negative ones because of the lower associated cost. Using this
model the predicted fraud outcomes for the test data yielded
the Confusion Matrix given in Table V. Here we clearly see the
trade-off in the types of errors, for which predictive accuracy
stands at 84.5%, roughly 5% lower than that of the traditional
CART DT shown earlier.

Since the exact costs associated with errors are not known,
we evaluated the costs for various values of η. We then
compare the cost of the cost-based optimal result with the
cost of the accuracy-based optimal result. This ratio is

R =
Pfn(cost) + ηPfp(cost)

Pfn(acc) + ηPfp(acc)
(3)

Note that when η = 0 then false positive errors cost nothing
and so it is optimal to always choose a positive outcome in
which case R = 0. If η = 1 then this corresponds to unit
costs for both types of errors and hence the resulting optimal
probabilities are the same that would be obtained for accuracy
and hence in this case we get R = 1. In Figure VII we plot
the value of this ratio R for various values of η.

In Figure VII, it is clear that savings are expected to increase
as error rates increase. This has the potential to provide
the telecommunication company with tangible cost savings
when faced with the possibility of prediction errors, and thus

provides a major advantage over the traditional approach to
the problem at hand.

VIII. CONCLUSIONS AND FUTURE WORK

Training and testing the CART DT and SVM models
produced acceptable performance results. Our analysis created
a suitable platform for further development of a PRS fraud
detection model by providing useful insight on the matter.
At the core, including other call level variables as input,
or revisiting/resampling the training and testing data, may
also be of value. Moreover, it was illustrated that using a
cost-sensitive approach can lead to tangible cost savings,
despite sacrificing some predictive accuracy as compared to
a traditional approach. This approach is highly recommended
for future research, and will be examined further.
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