
Technological Forecasting & Social Change 176 (2022) 121461

Available online 31 December 2021
0040-1625/© 2021 Elsevier Inc. All rights reserved.

Dynamic group formation in an online social network
Reshawn Ramjattan a,*, Nicholas Hosein b, Patrick Hosein a, Andre Knoesen b

a The University of the West Indies, St. Augustine, Trinidad
b University of California, Davis, CA 95616, USA

A R T I C L E I N F O

Keywords:
Online groups
Recruitment
Matchmaking
Network flow

A B S T R A C T

For those seeking to recruit teammates for a specific purpose, like a project or study group, challenges quickly
arise once they have exhausted their social circle. In the wake of the current pandemic, meeting new people that
are right for a specific team is even more difficult than before due to the lack of in-person events. On social media
platforms, users often have large networks of connections but have very few close personal relationships within
them. This makes it difficult to find compatible people that share the same goal, and are interested in niche
groups on those platforms. We present a scalable framework for establishing small online groups that balance
two objectives, making the best group recommendations to users and guiding group hosts to the best users for
their group. We illustrate this framework using three use cases. Lastly, we evaluate a serverless implementation
using a large social media dataset to simulate a production environment and compare our framework to a
network flow approach to solving the problem.

1. Introduction

The ongoing pandemic has forced many events and gatherings to be
cancelled or moved online. However, many social aspects of in-person
gatherings, such as networking, cannot be easily facilitated by digital
media. Attending relevant events, classes or conferences is a frequent
approach to building a network of compatible and like-minded people.
So without real chances to network, assembling teams with a common
purpose becomes a challenging social task. For example, finding suitable
co-founders for start-up ventures or potential employees based on a
casual conversation at mixers or academic events, or establishing
rapport with classmates during practical exercises to form study groups.
These are situations where physical gatherings allow for personal con-
nections as a by-product of its main purpose and can greatly help with
meeting new people if you need a group.

While online platforms can create an acceptable stage for the main
event, they do not provide the same level of interpersonal possibility. We
consider the problem of a user seeking to form a small purposeful group
of the most suitable and compatible people. On existing social networks,
users often have a large number of friends but very few of them are close
personal relationships. The large network of loose and estranged re-
lationships is not very useful for finding group members that share the
same interest, purpose and timing. Research done by Ramjattan et al.

(2020) shows prior work in this area as well.
Consider a student forming a study group. Studies by Dolmans and

Schmidt (2006) and Springer et al. (1999) show that there are several
cognitive and motivational benefits to small group learning. There are
also benefits to presentation, communication and team-building skills.
Study groups allow students to take responsibility and benefit from
small group learning outside the classroom. Without preexisting re-
lationships, forming a study group in a class is close to forming a random
assortment.

This randomness results in a variety of personality types, learning
styles and interests among the members. This variety can negatively
affect not only the group’s compatibility, and therefore comfort in
engaging discussion, but also the effectiveness of the small group
learning since its members learn best in different ways. Even if the
students do not know their best learning method and style, work by
Chamorro-Premuzic et al. (2007) shows the correlation between per-
sonality and preference for learning methods.

By creating an online means to form these groups we can allow
students to find a group with high compatibility both as people and as
learners. It allows us to consider a wider set of potential group members
and some key variables such as learning style, personality traits McCrae
and John (1992), subject comfort and general common interests. We can
then form the ideal online study group efficiently. For example, a

* Corresponding author.
E-mail addresses: reshawn.ramjattan@my.uwi.edu (R. Ramjattan), nhosein@ucdavis.edu (N. Hosein), patrick.hosein@sta.uwi.edu (P. Hosein), aknoesen@

ucdavis.edu (A. Knoesen).

Contents lists available at ScienceDirect

Technological Forecasting & Social Change
journal homepage: www.elsevier.com/locate/techfore

https://doi.org/10.1016/j.techfore.2021.121461
Received 10 February 2021; Received in revised form 24 December 2021; Accepted 27 December 2021

mailto:reshawn.ramjattan@my.uwi.edu
mailto:nhosein@ucdavis.edu
mailto:patrick.hosein@sta.uwi.edu
mailto:aknoesen@ucdavis.edu
mailto:aknoesen@ucdavis.edu
www.sciencedirect.com/science/journal/00401625
https://www.elsevier.com/locate/techfore
https://doi.org/10.1016/j.techfore.2021.121461
https://doi.org/10.1016/j.techfore.2021.121461
https://doi.org/10.1016/j.techfore.2021.121461
http://crossmark.crossref.org/dialog/?doi=10.1016/j.techfore.2021.121461&domain=pdf

Technological Forecasting & Social Change 176 (2022) 121461

2

German student in an English speaking University can find a study group
with similar interests and the same native language.

While we just used educational groups for illustration, similar ar-
guments can be made for many other group formation scenarios like
recruitment, gaming teams and social clubs. The issue that needs to be
addressed is the conflicting needs of the person creating the group and
those being presented with groups to join. The seekers want to see
groups that are closest to their preferences. However, if they apply to
those, there might be users even closer to the host’s target attributes.
The outcome is that the group host has a large number of applications to
review and the seeker is likely to be rejected from the group in com-
parison to better fits. Therefore the problem is finding the right com-
bination of load balancing and matchmaking to meet both needs. We
must balance the happiness of group hosts and group seekers, by
showing seekers groups they are likely to get into and enjoy while
helping hosts find the most suitable users for their group in the least
applications.

Furthermore, as a live application, the set of users and groups would
be constantly changing as people join, create new groups and close full
groups. The initial solution to finding the best distribution of group
recommendations would soon be invalid. If a new solution takes too long
to produce, the end-user experience would vary depending on when the
last solution was found. Hence, considering scalability and delay in
solving the problem is also important.

We present a framework for establishing small groups that solve the
problem described. We focus on scalability through an event-driven
architecture and a fault-correction style approach to maintaining an
optimal system state. Illustrative scenarios are used to describe the
usefulness of the framework, which was implemented using serverless
cloud infrastructure. We evaluate the implementation by using social
media data to simulate a production environment with a large number of
users. Finally, we formulate the challenge as a network flow problem
and carry out a method to calculate the optimal result given a set of users
and groups. By doing this, we observed our framework’s sacrifice in
quality for its timeliness by comparing its results to the optimal one.

2. Literature review

The group recommending problem described can be viewed as an
extension to the matchmaking algorithm of a dating application. Work
done in Hitsch et al. (2010), Brozovsky and Petricek (2007), Li et al.
(2019), Tu et al. (2014), Mackinnon (2015), mal (2020) describe at-
tempts to find solutions to the one-to-one matchmaking problem. The
methods include using the Gale-Shapley algorithm Dubins and
Freedman (1981) as well as recommender systems and a combination of
techniques for producing additional user attributes. These methods
accomplish a means of determining high-quality two-sided matching.
However, the use case does not need to consider the load of matches or
applications faced by a user as much as it has to focus on producing the
most likely matches. Nor do they explicitly address the over-time scal-
ability of the approaches used.

Online gaming lobby creation is a popular group focused match-
making use case, so their approaches are worth considering as well. In
Boroń et al. (2020), Agarwal and Lorch (2009), Myślak and Deja (2014),
Manweiler et al. (2011), techniques used to form balanced and
well-matched groups, while addressing the time constraints of their use
case, are described. The methods place users in groups that best match
their case-specific attributes but these applications are shaped by the
time-sensitive nature of their purpose. To ensure users spend little time
waiting to play, lobby creation is done automatically so solutions are not
as concerned with the suitability constraints of our described problem.
In trying to emulate the social activity of forming a small meaningful
group, granting both hosts and group seekers control and choice is
paramount. When managing the load of applications bared by group
hosts, the problem expands out of only matchmaking and into the area of
load balancing applications for the host’s review.

Load balancing algorithms receive user requests as input and
distribute those requests among available resources based on their ca-
pacity. Variations of such algorithms including FIFO, fair scheduling and
capacity scheduling are presented by Ghomi et al. (2017) and Zaharia
(2009). These are strong solutions to load balancing problems in gen-
eral, however, they fail to account for two of the main concerns of our
described problem. Once an allocation is made, these methods do not
address maintaining a steady-state system while the sets of groups, users
and their attributes change over time. Nor do they concentrate on
matching attributes that can shape the way the load is distributed.

When considering our set of users, groups and the constraints that
limit the recommendations of groups to users, the problem can also be
viewed as a network flow assignment problem. Work in Bertsekas
(1992), Kuhn (1955), Gelareh et al. (2016), Bertsekas (1985) describe
solutions to this type of problem using auction, Hungarian and branch
and cut algorithms. These methods can find the best resulting recom-
mendations from a given network. But, in our described problem the
given set of users and groups are almost constantly changing. Running
such an algorithm on a large network so frequently would be expensive
and infeasible. Hence we must explore solutions that can maintain a
steady solution as the network changes while producing good quality
recommendations.

Maintaining a steady state can be perceived as consistently moving
towards an optimal solution in the face of sub-optimal changes. Simu-
lated Annealing (SA) Van Laarhoven and Aarts (1987), uses the analogy
of the annealing of solids to solve optimization problems. At each stage
of the SA algorithm, with some probability, one stays in the present state
or moves to a new state. This results in eventually moving to lower states
of energy, gradually approaching an approximate global optimum
Delahaye et al. (2019).

For a system with many users and many groups, finding the optimal
solution for the best recommendation of users to small groups is a
computationally intensive task. One possible approach is overnight
batch processing that re-stabilizes the system. However, this is still a
huge computation and not the most timely solution. Works by Attiya
et al. (2020) and Saadatpour et al. (2019) show cases of SA’s use in load
allocation problems. While none of these is a complete solution to our
problem, they present evidence that a scalable approach to solving the
problem described and maintaining a near-ideal state over time can be
achieved.

3. Methodology

Our network comprises of users seeking groups and groups created
by users/hosts, both with a set of preferences or attributes. Users can see
a small number of recommended groups and choose to apply to any of
those. Once they apply, the group host can accept or deny them.
Whether their group application is accepted or denied, users can
continue to apply to other groups since a new group will be suggested to
them. Our goal through these recommendations is to help users find the
best fitting group for their needs and help group hosts find the best users
for theirs.

This network would be constantly changing as users join and leave
while groups get created and closed. Therefore our problem is not only
finding the optimal network of users and recommended groups but
finding and maintaining such a system over time. Processing the entire
network continuously is expensive and infeasible, so we use a set of
algorithms to break down the network and focus on points of the most
significant change. By doing this, we lose some matchmaking quality but
can maintain a steady system in real-time. We define the goals of our
framework as follows.

• Balancing Happiness - Users and group hosts have conflicting
needs. Users want the best group for them but they may not be the
best fit, while the group hosts also want the best fitting members. So

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

3

we must find a balance that allows users to see the best fitting groups
they are likely to get accepted to.

• Ease of Use - This solution can be applied to several different areas
where quality-focused matchmaking is needed. Considerations must
be made for the framework to be re-applied with little new effort.

• Real-time Stability - One of its key attributes is maintaining a close-
to-best state at all times rather than periodically optimizing to the
best possible state.

3.1. Attributes

The attributes our framework uses are Preference Difference and
Users per group. Preference Difference is an aggregation of suitability
features that are decided per application. We chose to aggregate and
abstract these features to a single attribute to enhance the reusability of
the framework. Users per group is a measure of how many people are
recommended a group, relative to that group’s capacity. This is to help
ensure a fair spread of users across groups. This is also called the alpha
value, where u is the number of users shown a group, c is its capacity and
α = u

c.

3.1.1. Preference difference
Consider the example of companies recruiting new employees for a

specific team. The preference difference would comprise of the differ-
ences between the user and team for several different recruitment spe-
cific features. So we must also define how we compare those features
through cost functions. For illustration, suppose that our application
considers years of experience and the number of matching skills as its
features. We would define cost functions for measuring the difference
between a user’s experience level and the experience level the team
manager is looking for. Similarly for the difference in skill sets, resulting
in values for experience cost and skills cost respectively. The preference
difference dp our framework is concerned with would then be the
average of experience cost (ce) and skills costs (cs) and so dp = ce+cs

2 .
Next, we derive the Experience Cost Function. We would want team

members with experience closest to what the manager has defined as the
target to have the lowest difference cost. An example function that could
result in this would be ce where the difference between the user’s years
of experience and the target number is e and so ce = e

e+1. So a user with 1-
year experience applying for a team with a target of 5 years would have
a cost difference of ce(4) = 0.8 while someone with 4 years experience
would have a cost of ce(1) = 0.5

The Skills Cost Function is derived as follows. In comparing skill sets,
we may want to reward matching skills rather than punish mismatches
in our difference cost function. So where cs is skill cost, n is the total
number of skills and s is the number of matching skills between the user
and target team, our cost is cs = n−s

s .

3.1.2. Users per group
The number of users recommended a group is important to consider

because while we are only presenting options to users and not control-
ling who applies or gets accepted, we do not want to cause a small group
to be overloaded with unnecessary applications. For example, imagine
we have ten users and two created teams in our system where a user is
shown only one recommendation. We can show five users the first team
and the other five the second team. However, if one team has a capacity
of ten while the other has a capacity of three, the number of recom-
mendations per team is not fair. Hence the need for measuring users per
group through α. Ideally, we would want all groups to have similar α

values, making it an important parameter in the framework.

3.2. Framework

Our framework takes an event-driven approach to defining its

algorithms. It facilitates a serverless architecture for implementation,
easing the infrastructural demands and simplifying maintenance
through relevant cloud platforms. We define our metrics, method for
evaluating the state of a system and our objective function below. Then
the 4 use cases that follow describe our means of satisfying that objective
function. The use cases define the major sub-optimal events that can
occur, as well as the rectifying action to be taken by its corresponding
algorithm. A single function, called the Bubble Function, is used after
these cases for optimizing the quality of recommendations.

3.2.1. Objective function
To measure the state of the entire system we defined a metric called

system entropy. System entropy evaluates both the number of users
seeing a recommended group and the preference difference across that
system of matches. In its best possible state, this value would be zero.
Since we strive for equal α values across all groups, we measure the
spread of users per group by calculating the variance of α values. Where
u is the number of users in a group, c is its capacity, αi is the value of the
ith group, ̃α is the mean of α, n is the number of groups and the variance
of α, σ2, is given by

σ
2 = 1

n

∑n

i=1

(αi − α̃)2 (1)

For preference difference, we calculate the average difference in
features, using their cost functions, between all users and their recom-
mended groups. System entropy is then the sum of these two metrics.
Resulting in the objective function of minimizing the system entropy, e,
where A is the set of α values for all groups, di is the preference differ-
ence value of the ith user in the system and n is the total number of users.

mine = σ
2(A) + 1

n

∑n

i=1

di (2)

3.2.2. Use cases

1. New User: As a new user joins they would need to be given groups
they can choose to apply to based on their defined preferences.
Initially, the user’s recommendations are populated with the lowest
α groups to help balance the spread of users per group. A function is
then run to improve the quality of the user’s recommendations
without making changes to the number of recommendations or
number of users seeing a group.

2. New Group:A new group takes the worst matching users from the
groups with the highest α values. This rectifies the number of users
per group. The bubble function is then run on each moved user to
increase the quality of matches.

3. Remove User: When a user chooses to delete their account, they are
removed from any groups they belong to. The α of groups they were
shown will decrease, and be addressed when new users join.

4. Close Group: If a group is full or a host decides to close or delete
their group, all users who were recommended this group now have
an empty slot to be filled. Firstly, to address balancing users per
group, these users are spread across the lowest α groups. Then the
bubble function is run for each user to replace the once low α group
with a better quality match.

3.2.3. Bubble function
The previous cases make considerations for balancing the number of

users recommended each group, the group α values. This function is
concerned with improving the quality of those recommendations. The
bubble function seeks to swap out recommended groups with better
quality matches. This is done by iterating through a user’s recommen-
dations and searching for swaps with users in other groups that would
decrease the overall preference difference. We swap users in groups
rather than simply changing groups to maintain the distribution of users

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

4

across groups.
We take a greedy approach to finding the best swaps. For each group

a user has, we search the entire set of other groups’ members for the best
swap. This process is simple and allows for the possibility of stopping
after finding some good swaps. A swap is considered good if the total
preference difference after the swap is lower than it was before. As the
computation of this can become too heavy, one can filter the other
groups that checked based on some important feature, for example,
distance.

3.3. Applications

The events of the framework architecture remain generally the same
across applications. Adapting to an application focuses on changing the
definition of preference differences that measure the matching quality.
The following examples illustrate this as well as the usefulness of the
framework through different applications.

3.3.1. Employee/Team recruitment
Recruiting employees or members for a specific team, project or

department is a time-consuming process. Our framework, in a case like
this, could consider primary roles, skill sets and personal interest tags as
cost functions or features. Some common personal interests can lead to
the easy establishment of rapport and therefore cultural fit. An example
of a cost function cr, where diversity of roles is preferred, is as follows. cr
= 1− ru

n , where ru is the number of unique preferred role values among
users in a team and n is the total number of users in the group. This
systematic approach can improve the quality of matching for small
projects as well as improve the efficiency of pre-processing applications
for larger businesses.

3.3.2. Study groups
For a university student, classmates might not be the best candidates

to form a study group with. Learning styles and personality traits can
vary greatly and can negatively affect the compatibility needed for a
well-functioning study group. Online study group matchmaking in-
creases the efficiency and likelihood of forming an ideal study group by
widening the scope of candidates and considering key attributes. These
key attributes also define our preference difference cost functions and
include learning styles and personalities.

3.3.3. Online gaming teams
Depending on the nature of the online video game, users may play

alone or need to form larger teams beyond their friend group. Ideal
gaming teams can be created by devising cost functions around ensuring
similar player skills, a variety of preferred roles, similar intentions,
whether it’s for competitive improvement or casual fun, and general
interest tags for building team rapport.

3.4. Implementation

We implemented the framework using a set of cloud services and
datasets that could simulate a network of users and groups. An android
application was used to drive simulated user actions.

3.4.1. Architecture
The driving android app was developed using Flutter and supported

events for our major use cases as well as over-time simulation of those
events. Google Cloud Platform services were used for data storage and
hosting function logic. Specifically, Cloud Functions were used for
hosting serverless functions for each of the event use cases and functions
described in the previous section. Firestore was used for storing user
data sent from the application. Figure 2 illustrates the solution’s system
architecture.

3.4.2. Datasets
The Facebook100 Traud et al. (2011) dataset was used as a source of

feature values for both users and groups. For example, the “Student
Major” feature had the most normal distribution and was used to
represent a simulated application feature in the later experiments. The
dataset did not contain location data for users which were needed for
measuring distance costs as an additional feature. We used the
tweet-geolocation-5m Zubiaga et al. (2017) dataset and assigned loca-
tion information to each pseudo-user. This resulted in a dataset of
approximately 1.2 million users with subject comfort level and location
attributes. The listings in Fig. 1 show summaries of the resulting data
models for users and groups.

3.4.3. Race conditions
Within our described cases and algorithms, race conditions are

common. For example, if two sub-optimal changes, like groups being
created, occur at the same time and result in two bubble functions being
run concurrently on two different users. This creates the possibility of
those two users attempting to swap with the same person to get into that
group, as illustrated in Fig. 3. To resolve this, our implementation uses
Firestore Transactions to ensure atomic operations on the most up to
date data whenever state-changing actions, such as swapping groups,
are to be made.

3.4.4. Bubble function subsets
As mentioned previously, the bubble function uses a subset of the

groups in the system to reduce the computational load. One of the design
decisions made for our implementation was to use proximity as the basis
for deciding the subset. Proximity was chosen because the similarity in
culture and timezone as well as the potential for some future in-person
communication was deemed to be important for many different group-
forming scenarios. Further to this point, one of the features our imple-
mentation considered was the physical distance between a user and a
group. This distance was calculated using the Haversine formula, also
known as great circle distance, which is a method of measuring the
distance between two pairs of coordinates. The distance cost function
where cd is cost, d is the distance between the user and group location, is

Fig. 1. Data types.

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

5

given by cd = d
d+1

The Haversine formula for producing d is given below where R is the
radius of the Earth and lon1, lon2, lat1, lat2 are the coordinates of two
points.
Δlon = lon1 − lon2

Δlat = lat1 − lat2

a = sin
2
Δlat

2
+ cos lat1 cos lat2 sin

2
Δlon

2

c = 2atan2

(̅̅̅
a

√
,

̅̅̅̅̅̅̅̅̅̅̅
1 − a

√)

d = Rc

To produce the proximity subset, we fetch the x closest groups to the
primary user of the function, where x is the size of the subset. Sorting by
coordinates in queries is not supported by Firestore so an alternative
process was used. The longitude and latitude float values are converted
to 32-bit floating-point binary representations. Then the bits are inter-
leaved in the order of most significant to the least. This 64-bit value is
stored in the user or group’s document. Consider three user documents
sorted by this 64-bit value. The order is such that the first user is farthest
from the third. That is, the documents closest on either side to any given
document are the closest users to it. Therefore to fetch the x closest
groups, we sort by the 64-bit location value and query for x

2 documents
less than and greater than the primary user’s location value.

3.4.5. Evaluation
We ran two main experiments to evaluate our approach. The first was

to ensure the framework successfully improved our definition of the
system state. While the second sought to show that improving our
measures of system quality corresponds to forming better group
recommendations.

The first experiment measured the system entropy throughout a
simulation of events. Entropy represents the state of the system con-
cerning our goal. As mentioned in Section 3.2.1, it’s the combined value
of the differences in preferences across all recommended groups to users
and the number of users recommended each group concerning group
capacity, also known as the α value. A sample of 100 users and 20 groups
were created in a way that all groups had the same α value. Users and

groups only held a single feature of interest, student major, for the sake
of simpler calculation verification and simpler visualization of results.
This feature was chosen because it had the most normal distribution
among those in the dataset. Next, the bubble function was triggered on
different users 350 times. For this setup only, the function was triggered
manually since no sub-optimal changes will occur to trigger it auto-
matically. This was tracked on every update for any group or user by an
additional cloud function.

All traced entropy values were accompanied by a timestamp and the
entropy over time was plotted, resulting in the graph shown in Fig. 6.
During this period we also measured the average difference cost of users
in a group for all groups and produced the plot shown in Fig. 7. The
average difference cost is the average difference in preferences between
users and each of the groups they were recommended. Figure 7 shows
how this average changed over the duration of the experiment. This
visualizes the use cases’ impact of optimizing for the entire system on
individual users.

Next, we adjusted the framework to run as intended for a real system,
with the cases and functions set to run on triggering events. We also
added new groups and users over time. This was done to test the
method’s ability to maintain a steady-state. The aforementioned entropy
trace continued in the same way. The entropy over time is provided in
Fig. 4. To show the impact of the framework’s use case functions, we also
tracked the α values of all groups during this period, the results are
shown in Fig. 5. Since α is the ratio of users being recommended a group
to that group’s capacity, Fig. 5 shows the impact of our framework on
the average visibility of groups over time as recommendations to users
change.

The second experiment focused on testing whether or not our
framework and definition of metrics resulted in improved group quality
and recommendations. We repeated the simulations of experiment 1 but
with 1000 users and 20 groups holding 50 users each. Before and after it
was run, we plotted each user’s value of the feature of interest, simulated
using the “Student Major” feature, against their recommended group’s
corresponding value. As more points overlap they merge, and their
shade of copper darkens as density increases. Figure 8 shows the initial
state of users’ simulated feature value against the value of the group they
were being recommended. This state shows a random assortment of
group recommendations to users and represents a poor system state.
Figure 9 shows the final state after the framework’s functions were run
and optimized for the objective function.

3.5. Network flow approach

The major disadvantage of our approach versus a network flow
approach is the possibility of falling into local optima. When the
network flow solution is run, though infrequently, it would result in the
optimal state of the system. Therefore, it was important to determine
how much worse the solutions from our method were, on average. To
that end, we defined our scenario as a network flow problem with the
constraint below where dij is the flow cost from user to a group, the
number of groups a user can belong to is predetermined and constant
and the number of users per group is calculated beforehand such that the
α variance is minimized. The network model is also illustrated in Fig. 10.

The network flow solution was developed in JULIA and modelled
using JuMP, a modelling language for mathematical optimization
embedded in Julia, and the Coin-or Branch and Cut (Cbc) optimizer. We
then ran a series of experiments where a sequence of actions was
simulated using our approach, while the network flow solution was run
on the same system of users and groups. The average system entropy, as
defined in the aforementioned evaluation section, was calculated and
recorded for both solutions. Results are shown in Table 1.

4. Discussion

Figure 6 shows the result of the experiment to test the ability of the

Fig. 2. System architecture.

Fig. 3. Bubble function race condition.

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

6

bubble function to move a static set of users and groups towards an ideal
state of low entropy. The plot indicates that our results are as expected,
the system strictly decreases in entropy until it plateaus. This shows that
the framework successfully improves the state of recommendations on a
still set.

The average preference difference cost between each group and their
respective set of users is shown in Fig. 7. From the plot, it can be seen
that the costs tend to oscillate throughout the process before steadying.

This is because a group can only be shown to a reasonable number of
users. So when the Bubble function makes changes that improve the
overall preference difference cost of the entire system, swaps occur
where users are given worse matches for the sake of giving another user
an improved match that outweighs their peer’s loss. This results in the
oscillation of the group averages.

The remainder of the experiment was done in a setup that simulated
expected behaviour and use. The overall goal was to determine the

Fig. 4. System entropy over steadying state evaluation.

Fig. 5. Alpha per group.

Fig. 6. System entropy over bubble evaluation.

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

7

ability of the system to maintain an ideal state following sub-optimal
changes. In Fig. 4 instead of strictly decreasing, at the points of simu-
lated actions, there were small spikes of entropy due to the sub-optimal
changes. The bubble function that followed in each case immediately
brought that entropy back down. It should also be noted that the plot is
still trending downwards because of the further improved recommen-
dations that were found during the changes.

As the simulation changed the set of groups in the system, the alpha
values could not remain constant as before. In Fig. 5 we see the alpha
values adopted an oscillating pattern close to the other plots. This
demonstrates the way our use case functions balance group alpha by
relocating users to new groups from high alpha ones and vice versa in
response to appropriate system events.

Figure 8 shows the initial state of groupings with the initial entropy
values. The arrangement is random and represents a poor allocation of
users. Each group has a wide-spanning variety of user feature values
shown by the spread of points on the plot. Figure 9 shows the final state
of groupings after the framework functions were run. A positive linear
correlation between user values and group values for the feature of in-
terest can be seen. This shows that users move closer to one another and
towards groups with comfort level values close to their own. These are

the groups they would be happiest with and are most likely to get
accepted into. Small outlying clumps of users are still present due to
cases where the best matching group is already filled with better
matches.

The results in Table 1comparing our solution to the optimum of the
network flow approach show that the difference is negligible at the
system size of our tests. As the system grows in size the impact of local
minima may increase but we deem the trade-off of less than absolute
results for near real-time solutions worth it in some applications.

5. Conclusion

In the case of forming small online groups, existing options are too
impersonal because of their size and do not consider the happiness of
both group seekers and creators. Some solutions such as network flow
optimization and clustering algorithms may find the best possible so-
lution, but in applications where the problem set is constantly changing,
they are unable to efficiently maintain a steady solution. We provide a
solution to this in the form of a framework that makes continuous steps
towards the optimal in response to sub-optimal events. The framework
helps group hosts get the best members from the least application

Fig. 7. Average cost of each group’s users.

Fig. 8. Initial state of user feature values vs. group feature values.

R. Ramjattan et al.

Technological Forecasting & Social Change 176 (2022) 121461

8

reviews and shows users the best groups they are likely to be interested
in and also accepted by since they are among the best users for it. We
illustrated the framework’s usefulness through practical examples and
validated it through implementation and testing. While the proposed
solution addresses the problem, there is still room for improvement.

Future work includes obtaining feedback on the usefulness of
example applications. In each example use case the target audience is
evident. We can validate their usefulness by designing and adminis-
tering appropriate surveys to judge potential users’ thoughts on the
current state of the problem and how much they value a solution.

Furthermore, we can improve the depth of the implementation and
simulations by focusing on a single scenario like recruitment. Our
implementation featured two cost functions for the sake of simplicity
and ease of understanding. Assessing a combination of more cost func-
tions would be a closer representation of a real application. Moreover,
the simulations by which we assess the implementation can be improved
by modelling the experiments to closer resemble a real system. We can
do this by emulating a realistic user growth curve and churn rate.
Improving the quality and variety of how we evaluate the framework
can create chances for beneficial discoveries that would lead to more

successful production use.
The current approach describes cases and functions focused on

similarity as an indicator for good match fit. However, existing work
shows that trust among users is just as important as a measure of simi-
larity De Meo et al. (2015, 2017a, 2017b). This can be addressed by
exploring the use of trust frameworks within the network. For example,
work by Ramoudith and Hosein (2020) demonstrates a framework that
can produce trust values for users within a network. This value can then
be included in our approach as a weighted feature. Thus, including trust,
while keeping the ability to maintain ideal solutions in environments
with frequently changing sets.

Finally, we plan to investigate the integration of algorithms used in
the network flow formulation of the problem with our framework.
Replacing the greedy approach of our bubble function with such an al-
gorithm will allow us to take advantage of their efficiency while
benefiting from our framework’s event-driven focus on subsets of the
network. The constraints used will be similar to the evaluation section
above. The capacity of groups will be decided by the framework’s alpha
balancing cases as usual. The updated bubble function will continue to
not affect how many users are recommended each group, only the
quality of the recommendations.

CRediT authorship contribution statement

Reshawn Ramjattan: Methodology, Software, Writing – original
draft, Visualization, Investigation, Validation. Nicholas Hosein:
Conceptualization, Methodology, Formal analysis, Resources, Writing –

review & editing. Patrick Hosein: Conceptualization, Formal analysis,
Supervision, Writing – review & editing. Andre Knoesen: Conceptual-
ization, Formal analysis, Supervision, Writing – review & editing.

References
OKCupid: The Math Behind Online, 2020. Dating.https://blogs.ams.org/mathgradblog

/2016/06/08/okcupid-math-online-dating/
Agarwal, S., Lorch, J.R., 2009. Matchmaking for online games and other latency-

sensitive P2P systems. Proceedings of the ACM SIGCOMM 2009 Conference on Data
Communication, pp. 315–326.

Attiya, I., Abd Elaziz, M., Xiong, S., 2020. Job scheduling in cloud computing using a
modified harris hawks optimization and simulated annealing algorithm. Comput.
Intell. Neurosci. 2020.

Bertsekas, D., 1985. A distributed asynchronous relaxation algorithm for the assignment
problem. 1985 24th IEEE Conference on Decision and Control, pp. 1703–1704.

Bertsekas, D.P., 1992. Auction algorithms for network flow problems: a tutorial
introduction. Comput. Optim. Appl. 1 (1), 7–66.

Fig. 9. Final state of user feature values vs. group feature values.

Fig. 10. Network flow model.

Table 1
Performance of proposed approach.

Proposed approach value Optimal value
1000 users, 100 groups 620.96 620.94
2000 users, 100 groups 1224.85 1224.82

R. Ramjattan et al.

http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0001
https://blogs.ams.org/mathgradblog/2016/06/08/okcupid-math-online-dating/
https://blogs.ams.org/mathgradblog/2016/06/08/okcupid-math-online-dating/
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0002
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0002
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0002
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0003
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0003
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0003
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0004
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0004
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0005
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0005

Technological Forecasting & Social Change 176 (2022) 121461

9

Boroń, M., Brzeziński, J., Kobusińska, A., 2020. P2P matchmaking solution for online
games. Peer-to-Peer Netw. Appl. 13 (1), 137–150.

Brozovsky, L., Petricek, V., 2007. Recommender system for online dating service. arXiv
preprint arXiv:cs/0703042.

Chamorro-Premuzic, T., Furnham, A., Lewis, M., 2007. Personality and approaches to
learning predict preference for different teaching methods. Learn. Individ. Differ. 17
(3), 241–250.

De Meo, P., Messina, F., Pappalardo, G., Rosaci, D., Sarnè, G.M., 2015. Similarity and
trust to form groups in online social networks. OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”. Springer, pp. 57–75.

De Meo, P., Messina, F., Rosaci, D., Sarn, G.M., 2017. Combining trust and skills
evaluation to form e-learning classes in online social networks. Inf. Sci. 405 (C),
107–122. https://doi.org/10.1016/j.ins.2017.04.002.

De Meo, P., Messina, F., Rosaci, D., Sarné, G.M., 2017. Forming time-stable homogeneous
groups into online social networks. Inf. Sci. 414, 117–132.

Delahaye, D., Chaimatanan, S., Mongeau, M., 2019. Simulated annealing: from basics to
applications. Handbook of Metaheuristics. Springer, pp. 1–35.

Dolmans, D.H., Schmidt, H.G., 2006. What do we know about cognitive and motivational
effects of small group tutorials in problem-based learning? Adv. Health Sci. Educ. 11
(4), 321.

Dubins, L.E., Freedman, D.A., 1981. Machiavelli and the Gale-Shapley algorithm. Am.
Math. Month. 88 (7), 485–494.

Gelareh, S., Monemi, R.N., Semet, F., Goncalves, G., 2016. A branch-and-cut algorithm
for the truck dock assignment problem with operational time constraints. Eur. J.
Oper. Res. 249 (3), 1144–1152.

Ghomi, E.J., Rahmani, A.M., Qader, N.N., 2017. Load-balancing algorithms in cloud
computing: a survey. J. Netw. Comput. Appl. 88, 50–71.

Hitsch, G.J., Hortaçsu, A., Ariely, D., 2010. Matching and sorting in online dating. Am.
Econ. Rev. 100 (1), 130–163.

Kuhn, H.W., 1955. The Hungarian method for the assignment problem. Nav. Res. Logist.
Q. 2 (1–2), 83–97.

Li, X., Yuan, J., Li, E., Yao, W., Du, J., 2019. Trust-aware and fast resource matchmaking
for personalized collaboration cloud service. IEEE Trans. Netw. Serv.Manage. 16 (3),
1240–1254.

Mackinnon, L., 2015. Love’s Algorithm: Algorithmic Life: Calculative Devices in the Age
of Big Data, 161.

Manweiler, J., Agarwal, S., Zhang, M., Roy Choudhury, R., Bahl, P., 2011. Switchboard: a
matchmaking system for multiplayer mobile games. Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services, pp. 71–84.

McCrae, R.R., John, O.P., 1992. An introduction to the five-factor model and its
applications. J. Pers. 60 (2), 175–215.

Myślak, M., Deja, D., 2014. Developing game-structure sensitive matchmaking system for
massive-multiplayer online games. International Conference on Social Informatics.
Springer, pp. 200–208.

Ramjattan, R., Hosein, N., Hosein, P., Knoesen, A., 2020. Dynamic group formation with
suitability constraints in large social networks. 2020 IEEE International Conference
on Technology Management, Operations and Decisions (ICTMOD). IEEE, pp. 1–6.

Ramoudith, S., Hosein, P., 2020. A trust framework for the collection of reliable crowd-
sourced data. Future of Information and Communication Conference. Springer,
pp. 42–54.

Saadatpour, M., Afshar, A., Khoshkam, H., 2019. Multi-objective multi-pollutant waste
load allocation model for rivers using coupled archived simulated annealing
algorithm with qual2kw. J. Hydroinf. 21 (3), 397–410.

Springer, L., Stanne, M.E., Donovan, S.S., 1999. Effects of small-group learning on
undergraduates in science, mathematics, engineering, and technology: a meta-
analysis. Rev. Educ. Res. 69 (1), 21–51.

Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A., 2011. Comparing community
structure to characteristics in online collegiate social networks. SIAM Rev. 53 (3),
526–543.

Tu, K., Ribeiro, B., Jensen, D., Towsley, D., Liu, B., Jiang, H., Wang, X., 2014. Online
dating recommendations: matching markets and learning preferences. Proceedings
of the 23rd International Conference on World Wide Web, pp. 787–792.

Van Laarhoven, P.J., Aarts, E.H., 1987. Simulated annealing. Simulated annealing:
Theory and applications. Springer, pp. 7–15.

Zaharia, M., 2009. Job scheduling with the fair and capacity schedulers. Hadoop Summit
9.

Zubiaga, A., Voss, A., Procter, R., Liakata, M., Wang, B., Tsakalidis, A., 2017. Towards
real-time, country-level location classification of worldwide tweets. IEEE Trans.
Knowl. Data Eng. 29 (9), 2053–2066.

Reshawn Ramjattan obtained B.Sc and MSc. Degrees in Computer Science from The
University of the West Indies, St. Augustine. During his second year, he interned at First
Citizens Internal Audit where he wrote data analysis scripts. Mr. Ramjattan went on to
spend some time as a developer at a retail software company before becoming a part time
tutor at the Department of Computing and Information Technology. He is currently a
member of the TTLAB research group and a Data Science Intern at CIBC First International
Caribbean Bank.

Nicholas Hosein rejoined the PhD program at UC Davis after taking three years off to start
fashion wearable company, Kábrya, as well as to work full time as a life coach across
Europe and the Americas. He has his MS from UC Davis in Ai and algorithms design for low
power embedded systems and his BS from UC Berkeley in Electrical Engineering and
Computer Science. His contributions to education include designing and launching a cross
disciplinary course in IoT startups. Nick has an interest in using social dynamics to improve
society and how we educate.

Patrick Hosein attended the Massachusetts Institute of Technology (MIT) where he ob-
tained five degrees including a PhD in Electrical Engineering and Computer Science. He
has worked at Bose Corporation, Bell Laboratories, AT&T Laboratories, Ericsson and
Huawei. He has published extensively with over 100 refereed journal and conference
publications. He holds 40 granted and 42 pending patents in the areas of telecommuni-
cations and wireless technologies. He was nominated for the Ericsson Inventor of the Year
award in 2004 and was the Huawei US Wireless Research Employee of the year for 2007.
Patrick is presently a Professor of Computer Science at the University of the West Indies.
His present areas of research include radio resource management, QoS and pricing for 5G
cellular networks.

Andre Knoesen received his Ph.D. degree from the Georgia Institute of Technology,
Atlanta in 1987. He is a Professor and Department Chair of the Department of Electrical
Engineering, University of California, Davis. He is the principal author of a successful
interactive online textbook ”Introduction to MATLAB” published by zyBooks. His current
research is in cyber-physical systems and sensor networks. Dr. Knoesen is a fellow of the
Optical Society of America.

R. Ramjattan et al.

http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0006
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0006
http://arxiv.org/abs/0703042
http://arxiv.org/abs/0703042
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0008
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0008
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0008
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0009
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0009
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0009
https://doi.org/10.1016/j.ins.2017.04.002
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0011
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0011
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0012
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0012
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0013
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0013
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0013
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0014
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0014
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0015
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0015
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0015
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0016
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0016
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0017
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0017
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0018
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0018
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0019
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0019
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0019
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0021
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0021
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0021
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0022
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0022
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0023
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0023
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0023
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0024
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0024
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0024
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0025
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0026
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0026
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0026
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0027
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0028
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0028
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0028
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0029
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0030
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0030
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0031
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0031
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0032
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0032
http://refhub.elsevier.com/S0040-1625(21)00896-9/sbref0032

	Dynamic group formation in an online social network
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Attributes
	3.1.1 Preference difference
	3.1.2 Users per group

	3.2 Framework
	3.2.1 Objective function
	3.2.2 Use cases
	3.2.3 Bubble function

	3.3 Applications
	3.3.1 Employee/Team recruitment
	3.3.2 Study groups
	3.3.3 Online gaming teams

	3.4 Implementation
	3.4.1 Architecture
	3.4.2 Datasets
	3.4.3 Race conditions
	3.4.4 Bubble function subsets
	3.4.5 Evaluation

	3.5 Network flow approach

	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	References

