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A B S T R A C T   

For those seeking to recruit teammates for a specific purpose, like a project or study group, challenges quickly 
arise once they have exhausted their social circle. In the wake of the current pandemic, meeting new people that 
are right for a specific team is even more difficult than before due to the lack of in-person events. On social media 
platforms, users often have large networks of connections but have very few close personal relationships within 
them. This makes it difficult to find compatible people that share the same goal, and are interested in niche 
groups on those platforms. We present a scalable framework for establishing small online groups that balance 
two objectives, making the best group recommendations to users and guiding group hosts to the best users for 
their group. We illustrate this framework using three use cases. Lastly, we evaluate a serverless implementation 
using a large social media dataset to simulate a production environment and compare our framework to a 
network flow approach to solving the problem.   

1. Introduction 

The ongoing pandemic has forced many events and gatherings to be 
cancelled or moved online. However, many social aspects of in-person 
gatherings, such as networking, cannot be easily facilitated by digital 
media. Attending relevant events, classes or conferences is a frequent 
approach to building a network of compatible and like-minded people. 
So without real chances to network, assembling teams with a common 
purpose becomes a challenging social task. For example, finding suitable 
co-founders for start-up ventures or potential employees based on a 
casual conversation at mixers or academic events, or establishing 
rapport with classmates during practical exercises to form study groups. 
These are situations where physical gatherings allow for personal con-
nections as a by-product of its main purpose and can greatly help with 
meeting new people if you need a group. 

While online platforms can create an acceptable stage for the main 
event, they do not provide the same level of interpersonal possibility. We 
consider the problem of a user seeking to form a small purposeful group 
of the most suitable and compatible people. On existing social networks, 
users often have a large number of friends but very few of them are close 
personal relationships. The large network of loose and estranged re-
lationships is not very useful for finding group members that share the 
same interest, purpose and timing. Research done by Ramjattan et al. 

(2020) shows prior work in this area as well. 
Consider a student forming a study group. Studies by Dolmans and 

Schmidt (2006) and Springer et al. (1999) show that there are several 
cognitive and motivational benefits to small group learning. There are 
also benefits to presentation, communication and team-building skills. 
Study groups allow students to take responsibility and benefit from 
small group learning outside the classroom. Without preexisting re-
lationships, forming a study group in a class is close to forming a random 
assortment. 

This randomness results in a variety of personality types, learning 
styles and interests among the members. This variety can negatively 
affect not only the group’s compatibility, and therefore comfort in 
engaging discussion, but also the effectiveness of the small group 
learning since its members learn best in different ways. Even if the 
students do not know their best learning method and style, work by 
Chamorro-Premuzic et al. (2007) shows the correlation between per-
sonality and preference for learning methods. 

By creating an online means to form these groups we can allow 
students to find a group with high compatibility both as people and as 
learners. It allows us to consider a wider set of potential group members 
and some key variables such as learning style, personality traits McCrae 
and John (1992), subject comfort and general common interests. We can 
then form the ideal online study group efficiently. For example, a 
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German student in an English speaking University can find a study group 
with similar interests and the same native language. 

While we just used educational groups for illustration, similar ar-
guments can be made for many other group formation scenarios like 
recruitment, gaming teams and social clubs. The issue that needs to be 
addressed is the conflicting needs of the person creating the group and 
those being presented with groups to join. The seekers want to see 
groups that are closest to their preferences. However, if they apply to 
those, there might be users even closer to the host’s target attributes. 
The outcome is that the group host has a large number of applications to 
review and the seeker is likely to be rejected from the group in com-
parison to better fits. Therefore the problem is finding the right com-
bination of load balancing and matchmaking to meet both needs. We 
must balance the happiness of group hosts and group seekers, by 
showing seekers groups they are likely to get into and enjoy while 
helping hosts find the most suitable users for their group in the least 
applications. 

Furthermore, as a live application, the set of users and groups would 
be constantly changing as people join, create new groups and close full 
groups. The initial solution to finding the best distribution of group 
recommendations would soon be invalid. If a new solution takes too long 
to produce, the end-user experience would vary depending on when the 
last solution was found. Hence, considering scalability and delay in 
solving the problem is also important. 

We present a framework for establishing small groups that solve the 
problem described. We focus on scalability through an event-driven 
architecture and a fault-correction style approach to maintaining an 
optimal system state. Illustrative scenarios are used to describe the 
usefulness of the framework, which was implemented using serverless 
cloud infrastructure. We evaluate the implementation by using social 
media data to simulate a production environment with a large number of 
users. Finally, we formulate the challenge as a network flow problem 
and carry out a method to calculate the optimal result given a set of users 
and groups. By doing this, we observed our framework’s sacrifice in 
quality for its timeliness by comparing its results to the optimal one. 

2. Literature review 

The group recommending problem described can be viewed as an 
extension to the matchmaking algorithm of a dating application. Work 
done in Hitsch et al. (2010), Brozovsky and Petricek (2007), Li et al. 
(2019), Tu et al. (2014), Mackinnon (2015), mal (2020) describe at-
tempts to find solutions to the one-to-one matchmaking problem. The 
methods include using the Gale-Shapley algorithm Dubins and 
Freedman (1981) as well as recommender systems and a combination of 
techniques for producing additional user attributes. These methods 
accomplish a means of determining high-quality two-sided matching. 
However, the use case does not need to consider the load of matches or 
applications faced by a user as much as it has to focus on producing the 
most likely matches. Nor do they explicitly address the over-time scal-
ability of the approaches used. 

Online gaming lobby creation is a popular group focused match-
making use case, so their approaches are worth considering as well. In 
Boroń et al. (2020), Agarwal and Lorch (2009), Myślak and Deja (2014), 
Manweiler et al. (2011), techniques used to form balanced and 
well-matched groups, while addressing the time constraints of their use 
case, are described. The methods place users in groups that best match 
their case-specific attributes but these applications are shaped by the 
time-sensitive nature of their purpose. To ensure users spend little time 
waiting to play, lobby creation is done automatically so solutions are not 
as concerned with the suitability constraints of our described problem. 
In trying to emulate the social activity of forming a small meaningful 
group, granting both hosts and group seekers control and choice is 
paramount. When managing the load of applications bared by group 
hosts, the problem expands out of only matchmaking and into the area of 
load balancing applications for the host’s review. 

Load balancing algorithms receive user requests as input and 
distribute those requests among available resources based on their ca-
pacity. Variations of such algorithms including FIFO, fair scheduling and 
capacity scheduling are presented by Ghomi et al. (2017) and Zaharia 
(2009). These are strong solutions to load balancing problems in gen-
eral, however, they fail to account for two of the main concerns of our 
described problem. Once an allocation is made, these methods do not 
address maintaining a steady-state system while the sets of groups, users 
and their attributes change over time. Nor do they concentrate on 
matching attributes that can shape the way the load is distributed. 

When considering our set of users, groups and the constraints that 
limit the recommendations of groups to users, the problem can also be 
viewed as a network flow assignment problem. Work in Bertsekas 
(1992), Kuhn (1955), Gelareh et al. (2016), Bertsekas (1985) describe 
solutions to this type of problem using auction, Hungarian and branch 
and cut algorithms. These methods can find the best resulting recom-
mendations from a given network. But, in our described problem the 
given set of users and groups are almost constantly changing. Running 
such an algorithm on a large network so frequently would be expensive 
and infeasible. Hence we must explore solutions that can maintain a 
steady solution as the network changes while producing good quality 
recommendations. 

Maintaining a steady state can be perceived as consistently moving 
towards an optimal solution in the face of sub-optimal changes. Simu-
lated Annealing (SA) Van Laarhoven and Aarts (1987), uses the analogy 
of the annealing of solids to solve optimization problems. At each stage 
of the SA algorithm, with some probability, one stays in the present state 
or moves to a new state. This results in eventually moving to lower states 
of energy, gradually approaching an approximate global optimum 
Delahaye et al. (2019). 

For a system with many users and many groups, finding the optimal 
solution for the best recommendation of users to small groups is a 
computationally intensive task. One possible approach is overnight 
batch processing that re-stabilizes the system. However, this is still a 
huge computation and not the most timely solution. Works by Attiya 
et al. (2020) and Saadatpour et al. (2019) show cases of SA’s use in load 
allocation problems. While none of these is a complete solution to our 
problem, they present evidence that a scalable approach to solving the 
problem described and maintaining a near-ideal state over time can be 
achieved. 

3. Methodology 

Our network comprises of users seeking groups and groups created 
by users/hosts, both with a set of preferences or attributes. Users can see 
a small number of recommended groups and choose to apply to any of 
those. Once they apply, the group host can accept or deny them. 
Whether their group application is accepted or denied, users can 
continue to apply to other groups since a new group will be suggested to 
them. Our goal through these recommendations is to help users find the 
best fitting group for their needs and help group hosts find the best users 
for theirs. 

This network would be constantly changing as users join and leave 
while groups get created and closed. Therefore our problem is not only 
finding the optimal network of users and recommended groups but 
finding and maintaining such a system over time. Processing the entire 
network continuously is expensive and infeasible, so we use a set of 
algorithms to break down the network and focus on points of the most 
significant change. By doing this, we lose some matchmaking quality but 
can maintain a steady system in real-time. We define the goals of our 
framework as follows.  

• Balancing Happiness - Users and group hosts have conflicting 
needs. Users want the best group for them but they may not be the 
best fit, while the group hosts also want the best fitting members. So 
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we must find a balance that allows users to see the best fitting groups 
they are likely to get accepted to.  

• Ease of Use - This solution can be applied to several different areas 
where quality-focused matchmaking is needed. Considerations must 
be made for the framework to be re-applied with little new effort.  

• Real-time Stability - One of its key attributes is maintaining a close- 
to-best state at all times rather than periodically optimizing to the 
best possible state. 

3.1. Attributes 

The attributes our framework uses are Preference Difference and 
Users per group. Preference Difference is an aggregation of suitability 
features that are decided per application. We chose to aggregate and 
abstract these features to a single attribute to enhance the reusability of 
the framework. Users per group is a measure of how many people are 
recommended a group, relative to that group’s capacity. This is to help 
ensure a fair spread of users across groups. This is also called the alpha 
value, where u is the number of users shown a group, c is its capacity and 
α = u

c. 

3.1.1. Preference difference 
Consider the example of companies recruiting new employees for a 

specific team. The preference difference would comprise of the differ-
ences between the user and team for several different recruitment spe-
cific features. So we must also define how we compare those features 
through cost functions. For illustration, suppose that our application 
considers years of experience and the number of matching skills as its 
features. We would define cost functions for measuring the difference 
between a user’s experience level and the experience level the team 
manager is looking for. Similarly for the difference in skill sets, resulting 
in values for experience cost and skills cost respectively. The preference 
difference dp our framework is concerned with would then be the 
average of experience cost (ce) and skills costs (cs) and so dp = ce+cs

2 . 
Next, we derive the Experience Cost Function. We would want team 

members with experience closest to what the manager has defined as the 
target to have the lowest difference cost. An example function that could 
result in this would be ce where the difference between the user’s years 
of experience and the target number is e and so ce = e

e+1. So a user with 1- 
year experience applying for a team with a target of 5 years would have 
a cost difference of ce(4) = 0.8 while someone with 4 years experience 
would have a cost of ce(1) = 0.5 

The Skills Cost Function is derived as follows. In comparing skill sets, 
we may want to reward matching skills rather than punish mismatches 
in our difference cost function. So where cs is skill cost, n is the total 
number of skills and s is the number of matching skills between the user 
and target team, our cost is cs = n−s

s . 

3.1.2. Users per group 
The number of users recommended a group is important to consider 

because while we are only presenting options to users and not control-
ling who applies or gets accepted, we do not want to cause a small group 
to be overloaded with unnecessary applications. For example, imagine 
we have ten users and two created teams in our system where a user is 
shown only one recommendation. We can show five users the first team 
and the other five the second team. However, if one team has a capacity 
of ten while the other has a capacity of three, the number of recom-
mendations per team is not fair. Hence the need for measuring users per 
group through α. Ideally, we would want all groups to have similar α 

values, making it an important parameter in the framework. 

3.2. Framework 

Our framework takes an event-driven approach to defining its 

algorithms. It facilitates a serverless architecture for implementation, 
easing the infrastructural demands and simplifying maintenance 
through relevant cloud platforms. We define our metrics, method for 
evaluating the state of a system and our objective function below. Then 
the 4 use cases that follow describe our means of satisfying that objective 
function. The use cases define the major sub-optimal events that can 
occur, as well as the rectifying action to be taken by its corresponding 
algorithm. A single function, called the Bubble Function, is used after 
these cases for optimizing the quality of recommendations. 

3.2.1. Objective function 
To measure the state of the entire system we defined a metric called 

system entropy. System entropy evaluates both the number of users 
seeing a recommended group and the preference difference across that 
system of matches. In its best possible state, this value would be zero. 
Since we strive for equal α values across all groups, we measure the 
spread of users per group by calculating the variance of α values. Where 
u is the number of users in a group, c is its capacity, αi is the value of the 
ith group, ̃α is the mean of α, n is the number of groups and the variance 
of α, σ2, is given by 

σ
2 = 1

n

∑n

i=1

(αi − α̃)2 (1) 

For preference difference, we calculate the average difference in 
features, using their cost functions, between all users and their recom-
mended groups. System entropy is then the sum of these two metrics. 
Resulting in the objective function of minimizing the system entropy, e, 
where A is the set of α values for all groups, di is the preference differ-
ence value of the ith user in the system and n is the total number of users. 

mine = σ
2(A) + 1

n

∑n

i=1

di (2)  

3.2.2. Use cases  

1. New User: As a new user joins they would need to be given groups 
they can choose to apply to based on their defined preferences. 
Initially, the user’s recommendations are populated with the lowest 
α groups to help balance the spread of users per group. A function is 
then run to improve the quality of the user’s recommendations 
without making changes to the number of recommendations or 
number of users seeing a group.  

2. New Group:A new group takes the worst matching users from the 
groups with the highest α values. This rectifies the number of users 
per group. The bubble function is then run on each moved user to 
increase the quality of matches.  

3. Remove User: When a user chooses to delete their account, they are 
removed from any groups they belong to. The α of groups they were 
shown will decrease, and be addressed when new users join.  

4. Close Group: If a group is full or a host decides to close or delete 
their group, all users who were recommended this group now have 
an empty slot to be filled. Firstly, to address balancing users per 
group, these users are spread across the lowest α groups. Then the 
bubble function is run for each user to replace the once low α group 
with a better quality match. 

3.2.3. Bubble function 
The previous cases make considerations for balancing the number of 

users recommended each group, the group α values. This function is 
concerned with improving the quality of those recommendations. The 
bubble function seeks to swap out recommended groups with better 
quality matches. This is done by iterating through a user’s recommen-
dations and searching for swaps with users in other groups that would 
decrease the overall preference difference. We swap users in groups 
rather than simply changing groups to maintain the distribution of users 
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across groups. 
We take a greedy approach to finding the best swaps. For each group 

a user has, we search the entire set of other groups’ members for the best 
swap. This process is simple and allows for the possibility of stopping 
after finding some good swaps. A swap is considered good if the total 
preference difference after the swap is lower than it was before. As the 
computation of this can become too heavy, one can filter the other 
groups that checked based on some important feature, for example, 
distance. 

3.3. Applications 

The events of the framework architecture remain generally the same 
across applications. Adapting to an application focuses on changing the 
definition of preference differences that measure the matching quality. 
The following examples illustrate this as well as the usefulness of the 
framework through different applications. 

3.3.1. Employee/Team recruitment 
Recruiting employees or members for a specific team, project or 

department is a time-consuming process. Our framework, in a case like 
this, could consider primary roles, skill sets and personal interest tags as 
cost functions or features. Some common personal interests can lead to 
the easy establishment of rapport and therefore cultural fit. An example 
of a cost function cr, where diversity of roles is preferred, is as follows. cr 
= 1− ru

n , where ru is the number of unique preferred role values among 
users in a team and n is the total number of users in the group. This 
systematic approach can improve the quality of matching for small 
projects as well as improve the efficiency of pre-processing applications 
for larger businesses. 

3.3.2. Study groups 
For a university student, classmates might not be the best candidates 

to form a study group with. Learning styles and personality traits can 
vary greatly and can negatively affect the compatibility needed for a 
well-functioning study group. Online study group matchmaking in-
creases the efficiency and likelihood of forming an ideal study group by 
widening the scope of candidates and considering key attributes. These 
key attributes also define our preference difference cost functions and 
include learning styles and personalities. 

3.3.3. Online gaming teams 
Depending on the nature of the online video game, users may play 

alone or need to form larger teams beyond their friend group. Ideal 
gaming teams can be created by devising cost functions around ensuring 
similar player skills, a variety of preferred roles, similar intentions, 
whether it’s for competitive improvement or casual fun, and general 
interest tags for building team rapport. 

3.4. Implementation 

We implemented the framework using a set of cloud services and 
datasets that could simulate a network of users and groups. An android 
application was used to drive simulated user actions. 

3.4.1. Architecture 
The driving android app was developed using Flutter and supported 

events for our major use cases as well as over-time simulation of those 
events. Google Cloud Platform services were used for data storage and 
hosting function logic. Specifically, Cloud Functions were used for 
hosting serverless functions for each of the event use cases and functions 
described in the previous section. Firestore was used for storing user 
data sent from the application. Figure 2 illustrates the solution’s system 
architecture. 

3.4.2. Datasets 
The Facebook100 Traud et al. (2011) dataset was used as a source of 

feature values for both users and groups. For example, the “Student 
Major” feature had the most normal distribution and was used to 
represent a simulated application feature in the later experiments. The 
dataset did not contain location data for users which were needed for 
measuring distance costs as an additional feature. We used the 
tweet-geolocation-5m Zubiaga et al. (2017) dataset and assigned loca-
tion information to each pseudo-user. This resulted in a dataset of 
approximately 1.2 million users with subject comfort level and location 
attributes. The listings in Fig. 1 show summaries of the resulting data 
models for users and groups. 

3.4.3. Race conditions 
Within our described cases and algorithms, race conditions are 

common. For example, if two sub-optimal changes, like groups being 
created, occur at the same time and result in two bubble functions being 
run concurrently on two different users. This creates the possibility of 
those two users attempting to swap with the same person to get into that 
group, as illustrated in Fig. 3. To resolve this, our implementation uses 
Firestore Transactions to ensure atomic operations on the most up to 
date data whenever state-changing actions, such as swapping groups, 
are to be made. 

3.4.4. Bubble function subsets 
As mentioned previously, the bubble function uses a subset of the 

groups in the system to reduce the computational load. One of the design 
decisions made for our implementation was to use proximity as the basis 
for deciding the subset. Proximity was chosen because the similarity in 
culture and timezone as well as the potential for some future in-person 
communication was deemed to be important for many different group- 
forming scenarios. Further to this point, one of the features our imple-
mentation considered was the physical distance between a user and a 
group. This distance was calculated using the Haversine formula, also 
known as great circle distance, which is a method of measuring the 
distance between two pairs of coordinates. The distance cost function 
where cd is cost, d is the distance between the user and group location, is 

Fig. 1. Data types.  

R. Ramjattan et al.                                                                                                                                                                                                                             



Technological Forecasting & Social Change 176 (2022) 121461

5

given by cd = d
d+1 

The Haversine formula for producing d is given below where R is the 
radius of the Earth and lon1, lon2, lat1, lat2 are the coordinates of two 
points. 
Δlon = lon1 − lon2  

Δlat = lat1 − lat2  

a = sin
2
Δlat

2
+ cos lat1 cos lat2 sin

2
Δlon

2  

c = 2atan2

( ̅̅̅
a

√
,

̅̅̅̅̅̅̅̅̅̅̅
1 − a

√ )

d = Rc 

To produce the proximity subset, we fetch the x closest groups to the 
primary user of the function, where x is the size of the subset. Sorting by 
coordinates in queries is not supported by Firestore so an alternative 
process was used. The longitude and latitude float values are converted 
to 32-bit floating-point binary representations. Then the bits are inter-
leaved in the order of most significant to the least. This 64-bit value is 
stored in the user or group’s document. Consider three user documents 
sorted by this 64-bit value. The order is such that the first user is farthest 
from the third. That is, the documents closest on either side to any given 
document are the closest users to it. Therefore to fetch the x closest 
groups, we sort by the 64-bit location value and query for x

2 documents 
less than and greater than the primary user’s location value. 

3.4.5. Evaluation 
We ran two main experiments to evaluate our approach. The first was 

to ensure the framework successfully improved our definition of the 
system state. While the second sought to show that improving our 
measures of system quality corresponds to forming better group 
recommendations. 

The first experiment measured the system entropy throughout a 
simulation of events. Entropy represents the state of the system con-
cerning our goal. As mentioned in Section 3.2.1, it’s the combined value 
of the differences in preferences across all recommended groups to users 
and the number of users recommended each group concerning group 
capacity, also known as the α value. A sample of 100 users and 20 groups 
were created in a way that all groups had the same α value. Users and 

groups only held a single feature of interest, student major, for the sake 
of simpler calculation verification and simpler visualization of results. 
This feature was chosen because it had the most normal distribution 
among those in the dataset. Next, the bubble function was triggered on 
different users 350 times. For this setup only, the function was triggered 
manually since no sub-optimal changes will occur to trigger it auto-
matically. This was tracked on every update for any group or user by an 
additional cloud function. 

All traced entropy values were accompanied by a timestamp and the 
entropy over time was plotted, resulting in the graph shown in Fig. 6. 
During this period we also measured the average difference cost of users 
in a group for all groups and produced the plot shown in Fig. 7. The 
average difference cost is the average difference in preferences between 
users and each of the groups they were recommended. Figure 7 shows 
how this average changed over the duration of the experiment. This 
visualizes the use cases’ impact of optimizing for the entire system on 
individual users. 

Next, we adjusted the framework to run as intended for a real system, 
with the cases and functions set to run on triggering events. We also 
added new groups and users over time. This was done to test the 
method’s ability to maintain a steady-state. The aforementioned entropy 
trace continued in the same way. The entropy over time is provided in 
Fig. 4. To show the impact of the framework’s use case functions, we also 
tracked the α values of all groups during this period, the results are 
shown in Fig. 5. Since α is the ratio of users being recommended a group 
to that group’s capacity, Fig. 5 shows the impact of our framework on 
the average visibility of groups over time as recommendations to users 
change. 

The second experiment focused on testing whether or not our 
framework and definition of metrics resulted in improved group quality 
and recommendations. We repeated the simulations of experiment 1 but 
with 1000 users and 20 groups holding 50 users each. Before and after it 
was run, we plotted each user’s value of the feature of interest, simulated 
using the “Student Major” feature, against their recommended group’s 
corresponding value. As more points overlap they merge, and their 
shade of copper darkens as density increases. Figure 8 shows the initial 
state of users’ simulated feature value against the value of the group they 
were being recommended. This state shows a random assortment of 
group recommendations to users and represents a poor system state. 
Figure 9 shows the final state after the framework’s functions were run 
and optimized for the objective function. 

3.5. Network flow approach 

The major disadvantage of our approach versus a network flow 
approach is the possibility of falling into local optima. When the 
network flow solution is run, though infrequently, it would result in the 
optimal state of the system. Therefore, it was important to determine 
how much worse the solutions from our method were, on average. To 
that end, we defined our scenario as a network flow problem with the 
constraint below where dij is the flow cost from user to a group, the 
number of groups a user can belong to is predetermined and constant 
and the number of users per group is calculated beforehand such that the 
α variance is minimized. The network model is also illustrated in Fig. 10. 

The network flow solution was developed in JULIA and modelled 
using JuMP, a modelling language for mathematical optimization 
embedded in Julia, and the Coin-or Branch and Cut (Cbc) optimizer. We 
then ran a series of experiments where a sequence of actions was 
simulated using our approach, while the network flow solution was run 
on the same system of users and groups. The average system entropy, as 
defined in the aforementioned evaluation section, was calculated and 
recorded for both solutions. Results are shown in Table 1. 

4. Discussion 

Figure 6 shows the result of the experiment to test the ability of the 

Fig. 2. System architecture.  

Fig. 3. Bubble function race condition.  
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bubble function to move a static set of users and groups towards an ideal 
state of low entropy. The plot indicates that our results are as expected, 
the system strictly decreases in entropy until it plateaus. This shows that 
the framework successfully improves the state of recommendations on a 
still set. 

The average preference difference cost between each group and their 
respective set of users is shown in Fig. 7. From the plot, it can be seen 
that the costs tend to oscillate throughout the process before steadying. 

This is because a group can only be shown to a reasonable number of 
users. So when the Bubble function makes changes that improve the 
overall preference difference cost of the entire system, swaps occur 
where users are given worse matches for the sake of giving another user 
an improved match that outweighs their peer’s loss. This results in the 
oscillation of the group averages. 

The remainder of the experiment was done in a setup that simulated 
expected behaviour and use. The overall goal was to determine the 

Fig. 4. System entropy over steadying state evaluation.  

Fig. 5. Alpha per group.  

Fig. 6. System entropy over bubble evaluation.  
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ability of the system to maintain an ideal state following sub-optimal 
changes. In Fig. 4 instead of strictly decreasing, at the points of simu-
lated actions, there were small spikes of entropy due to the sub-optimal 
changes. The bubble function that followed in each case immediately 
brought that entropy back down. It should also be noted that the plot is 
still trending downwards because of the further improved recommen-
dations that were found during the changes. 

As the simulation changed the set of groups in the system, the alpha 
values could not remain constant as before. In Fig. 5 we see the alpha 
values adopted an oscillating pattern close to the other plots. This 
demonstrates the way our use case functions balance group alpha by 
relocating users to new groups from high alpha ones and vice versa in 
response to appropriate system events. 

Figure 8 shows the initial state of groupings with the initial entropy 
values. The arrangement is random and represents a poor allocation of 
users. Each group has a wide-spanning variety of user feature values 
shown by the spread of points on the plot. Figure 9 shows the final state 
of groupings after the framework functions were run. A positive linear 
correlation between user values and group values for the feature of in-
terest can be seen. This shows that users move closer to one another and 
towards groups with comfort level values close to their own. These are 

the groups they would be happiest with and are most likely to get 
accepted into. Small outlying clumps of users are still present due to 
cases where the best matching group is already filled with better 
matches. 

The results in Table 1comparing our solution to the optimum of the 
network flow approach show that the difference is negligible at the 
system size of our tests. As the system grows in size the impact of local 
minima may increase but we deem the trade-off of less than absolute 
results for near real-time solutions worth it in some applications. 

5. Conclusion 

In the case of forming small online groups, existing options are too 
impersonal because of their size and do not consider the happiness of 
both group seekers and creators. Some solutions such as network flow 
optimization and clustering algorithms may find the best possible so-
lution, but in applications where the problem set is constantly changing, 
they are unable to efficiently maintain a steady solution. We provide a 
solution to this in the form of a framework that makes continuous steps 
towards the optimal in response to sub-optimal events. The framework 
helps group hosts get the best members from the least application 

Fig. 7. Average cost of each group’s users.  

Fig. 8. Initial state of user feature values vs. group feature values.  
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reviews and shows users the best groups they are likely to be interested 
in and also accepted by since they are among the best users for it. We 
illustrated the framework’s usefulness through practical examples and 
validated it through implementation and testing. While the proposed 
solution addresses the problem, there is still room for improvement. 

Future work includes obtaining feedback on the usefulness of 
example applications. In each example use case the target audience is 
evident. We can validate their usefulness by designing and adminis-
tering appropriate surveys to judge potential users’ thoughts on the 
current state of the problem and how much they value a solution. 

Furthermore, we can improve the depth of the implementation and 
simulations by focusing on a single scenario like recruitment. Our 
implementation featured two cost functions for the sake of simplicity 
and ease of understanding. Assessing a combination of more cost func-
tions would be a closer representation of a real application. Moreover, 
the simulations by which we assess the implementation can be improved 
by modelling the experiments to closer resemble a real system. We can 
do this by emulating a realistic user growth curve and churn rate. 
Improving the quality and variety of how we evaluate the framework 
can create chances for beneficial discoveries that would lead to more 

successful production use. 
The current approach describes cases and functions focused on 

similarity as an indicator for good match fit. However, existing work 
shows that trust among users is just as important as a measure of simi-
larity De Meo et al. (2015, 2017a, 2017b). This can be addressed by 
exploring the use of trust frameworks within the network. For example, 
work by Ramoudith and Hosein (2020) demonstrates a framework that 
can produce trust values for users within a network. This value can then 
be included in our approach as a weighted feature. Thus, including trust, 
while keeping the ability to maintain ideal solutions in environments 
with frequently changing sets. 

Finally, we plan to investigate the integration of algorithms used in 
the network flow formulation of the problem with our framework. 
Replacing the greedy approach of our bubble function with such an al-
gorithm will allow us to take advantage of their efficiency while 
benefiting from our framework’s event-driven focus on subsets of the 
network. The constraints used will be similar to the evaluation section 
above. The capacity of groups will be decided by the framework’s alpha 
balancing cases as usual. The updated bubble function will continue to 
not affect how many users are recommended each group, only the 
quality of the recommendations. 
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