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Introduction
Climate change and ocean acidification are equally critical problems [7]. The Carbon 
cycle is important to climate, ecology and overall human livelihood [35]. Moreover, 
CO2 is the most significant anthropogenic (human-induced) source of Carbon driving 
climate change [16]. Atmospheric CO2 has oscillated between 200 and 280 parts-per-
million (ppm) for the 400,000 years prior to industrialization. However, current levels 
now approach 300 ppm due to mainly anthropogenic sources [12].

Carbon sequestration is the transfer and secure storage of atmospheric CO2 into other 
long-lived Carbon pools called sinks. The oceans play a significant role in regulating 
earth’s systems [34], specifically in sequestration of global carbon dioxide concentrations 
[16]. The global ocean is the largest of the five global Carbon sinks and its level of Carbon 
uptake is increasing at a rate of 2.3 peta-grams ( 2.3 × 1015) of Carbon per year. Regional 
fluctuations in CO2 partial pressures can have potential consequences on global trends 
of carbon-related phenomenon [23]. The saturation of oceanic surface waters by Carbon 
Dioxide will result in a net decrease in the rate of carbonic uptake, and is estimated to 
contribute to a global temperature rise of 30% to 69% [13].
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The magnitude and rate of anthropogenic Carbon sequestered by the oceans exceeds 
the extent of variation due to natural sources for the past millennium [21] which further 
indicates oceanic saturation. The longest record for in-situ Carbon measurements begun 
in 1960, and shows that current rate of increase is as much as 30 times faster than pre-
industrial times [10]. Fossil fuels and cement production account for approximately 48% 
of the world’s global Carbon emissions [52]. In addition, deforestation, industrialization 
and land-use-changes have led to the unprecedented increase in Carbon emissions over 
the past 200 years [15].

Ocean acidification is the change in ocean chemistry driven by the oceanic uptake of 
Carbon [15]. It is characterised by a series of chemical reactions initiated when CO2 is 
absorbed by seawater. This CO2 dissolves into Carbonate and Bicarbonate resulting in 
an increase in hydrogen ion concentration. According to Körtzinger [28], ocean acidity 
has increased by 26% since the start of the industrial revolution. Additionally, the atmos-
pheric-oceanic carbon concentration gradient (difference between the Carbon concen-
tration in the atmosphere and in surface layers of the ocean) is likely to further affect 
climate changes and warming scenarios [29]. Ocean acidification has significant negative 
impacts on fundamental bio-ecological ocean processes [30, 52]. More alarmingly, past 
extinction events have been linked to ocean acidification [15], and the current rate of 
change in seawater chemistry is unprecedented [52].

The ability to quickly establish a baseline measurement for the Carbon content of large 
oceanic bodies is crucial in determining the levels of acidification in addition to assess-
ing the rate of temperature rise in oceanic surface waters. However, there remains sig-
nificant gaps in our ability to consistently and reliably estimate the carbon content of 
various sources and sinks, such as oceans [32]. Prediction and detection of carbon sinks 
are important issues with implications for all of human kind [21].

Laboratory measurements are the gold standard for assessing the carbon content of 
seawater, however research vessel time is costly and limited in coverage [31]. Remote 
sensing has the advantages of being fast, effective and near real-time [46]. The recent 
development of wide-band satellite imaging sensors has resulted in large quantities of 
high-resolution imagery being available [64]. Orbiting platforms additionally have the 
advantages of large observation range and high observation frequency [62] surpassing 
that of all alternate techniques such as in-situ buoys and marine vessels.

Remote sensing is yet to be fully exploited and has significant potential in providing 
extensive global measurements. However, there are currently no orbiting platforms 
capable of directly measuring oceanic Carbon levels. According to Tollefson [59], multi-
ple technical and political issues plague the development and launch of additional Car-
bon-monitoring instruments. This is evidenced by the multiple studies [3, 11, 20, 25, 26, 
45, 50, 65] outlining various approaches at developing proxies and underscoring chal-
lenges in oceanic measurements from space.

Surface-water Carbon Dioxide is influenced by thermodynamic and biological factors 
and is adequately represented by the partial-pressure of Carbon dioxide pCO2 at the 
surface. The most significant source is as a result of physical mixing processes caused 
by sea surface temperature (SST), sea surface salinity (SSS), chlorophyll-a (Chla), mixed 
layer depth (MLD), colored dissolved organic matter (CDOM), net primary produc-
tivity (NPP), photo-synthetically active radiation (PAR), wind speed and other factors. 



Page 3 of 18Sooknanan and Hosein ﻿Journal of Big Data            (2022) 9:93 	

Although sea-surface measurements may not fully encompass biological processes, 
observations at the surface are relevant proxies for oceanic Carbon content since the 
changes in carbonate chemistry due to atmospheric CO2 occurs in the surface first [31]. 
Thus, remote sensing derived data via orbiting platforms hold great potential as a tool 
for monitoring changes in oceanic chemistry.

The remainder of this paper is organized as follows: In Section II, we review the related 
research in the field of earth observation and previous approaches at quantifying car-
bon levels, with special focus to how machine-learning methods facilitate the modeling 
of carbon levels. A description of the datasets used and the choice of carbon proxy is 
introduced in Section III. Section IV highlights the model-development process with 
particular focus to the choice of loss function. Section V details the results of model-
development and training, and presents comparisons using permutations of predictor 
variables across three different models. Section VI underscores the scientific implica-
tions for our work, in addition to few limitations and potential for future work. Finally, 
our conclusions are discussed in Section VII.

Related work
In the past decade, a large number of new earth-observation orbiting platforms have 
been launched. As such, much effort has been placed on utilizing the unique, superior 
viewpoint of orbiting platforms for observation of both natural and human phenom-
ena. In the following, we focus on works targeting large-scale oceanic measurements. 
In particular, we investigate works that do not derive oceanic carbon-related parame-
ters (strictly) from first principles. Instead, we analyse works that employ data-driven 
approaches and statistical techniques to infer or derive patterns from observations.

To examine the oceanic carbon content, Poli et  al. [48] aimed to calculate the con-
stants for the dissociation of carbonic acid. These constants define the tendency of 
a higher-order molecule (such as Carbon Dioxide) to decompose into its constituents 
(ions of Hydrogen and various carbonates) and are typically a function of pressure and 
temperature. The partial pressure of CO2 in ocean surface waters was then determined 
from Dissolved Inorganic Carbon (DIC) and Total Alkalinity. These were used to vali-
date previous measurements of the constants of dissociation. However, Poli et al. [48] 
concluded that the optimal choice for these constants is subject to significant variability. 
Therefore usage of any one set of previously defined measurements for such derivations 
at a large scale were not recommended. This further justifies our usage of a data-driven 
approach as the physiochemical relationships vary depending on several inter-depend-
ent parameters. We can instead measure statistical significance by means of inference 
with a higher degree of confidence for a given region than the alternative first-principles 
derivation.

Bates et al. [2] modelled seawater carbonate chemistry in the North Atlantic Ocean 
using in-situ measurements collected from Hydrostation S sites and a number of 
cruises. These measurements were collected at a minimum once per month since 
1983 and were analysed for Dissolved Inorganic Carbon (DIC) by a variety of meth-
ods. The resulting DIC values was then used to establish a time-series for the region. 
However, according to Bates et al. [2], the data collected was heavily biased towards 
spring-time conditions owing to a sampling bias. This was evidenced by an apparent 
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decrease in sea-surface temperature in in-situ measurements, which does not agree 
with other independent studies [27, 57]. From this work, it was made clear that in-situ 
measurements must account for at least an annual cycle to overcome seasonal sam-
pling biases.

Zui et al. [66] compared models for Dissolved Inorganic Carbon at the ocean sur-
face using both satellite and in-situ data. Specifically, the Moderate Resolution Imag-
ing Spectro-radiometer (MODIS) array of satellite sensors was used to establish a 
relationship with DIC measurements at two point locations over the course of 9 years. 
Zui et al. [66] did not derive a purely unknown relationship between oceanic param-
eters and DIC, but rather compared earlier models’ performances with new data. In 
addition, their work regarded validation using in-situ measurements as the most pre-
cise method for confirming relationships found in their observations. This was a key 
theme in multiple published works as the ability to directly derive sea-surface, chemi-
cal parameters via remote-sensing is not yet possible.

Dixit et  al. [9] analysed the partial pressure of Carbon Dioxide pCO2 at the air-sea 
interface. A single autonomous system was deployed at 15°N 90°E in order to collect in-
situ measurements of pCO2 . A linear, large-margin separation model was shown to more 
accurately estimate the relationship between SST and Salinity than a multiple-linear-
regression (MLR) model. According to Krishna et al. [29], the influence of Sea-Surface 
Salinity (SSS), Sea-Surface Temperature(SST) and Chl-a on pCO2 varies depending on 
the domains of SST, SSS and Chl-a. Sabia et al. [51] therefore justified development of 
a multi-parametric (bracketed) non-linear model. It was shown that DIC values can be 
parameterized by Chlorophyll-a, Sea-Surface Salinity and Sea-Surface Temperature. 
However, the measurement values for Chlorophyll-A were not verified with in-situ data. 
Additionally, notwithstanding the use of multiple ranges for input attributes, accuracy 
was not comparable to previous approaches at regional models for CO2 [51].

Fugacity is the surface signature of ocean acidity, dynamics, and bio-geochemistry 
[36]. Liu W. Timothy [36] developed a statistical model based on a linear Support-
Vector Machine using Chlorophyll and Sea-Surface Temperature for predicting sur-
face-level oceanic carbon content. Data was sourced from NASA’s MODIS Satellites 
(Aqua and Terra) at a resolution of 0.25°. Owing to the large data gaps on these plat-
forms however, significant smoothing and averaging was done in order to extrapolate 
point measurements from the satellite data.

Similarly, Liu and Xie [35] modelled Carbon Dioxide partial pressure at the ocean 
surface. However, according to the authors, their choice of model may not have fully 
captured the desired relationships owing to a relatively low temporal resolution 
(250000 over 8 years) and usage of a linear kernel. Additionally, large gaps existed in 
the satellite mapping which was interpolated heavily to accommodate for lower res-
olution images (as compared to what is currently available). Therefore their model 
usage for a specific region requires additional training using recent, region-specific 
in-situ measurements [35]. Moreover, according to the authors, sufficient salin-
ity measurements were not available at the time of writing (similar to Liu W. Timo-
thy [36]) at sufficient spatio-temporal resolutions. This resulted in a lack of trend in 
model prediction where predicted levels of Carbon Dioxide at the ocean surface did 
not follow the general increase as evidenced by in-situ measurements.
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Following from the aforementioned, this work seeks to utilize recent advances in 
remote-sensing and integrated data sources to provide a Carbon model for the Carib-
bean region. This model exploits the relationship [58] between surface-level Carbon 
content and ocean-surface temperature.

Additionally, this work improves upon previous approaches (such as Liu W. Timo-
thy [36]) in the use of sea-surface-salinity data and usage of in-situ data of significantly 
higher spatial density. Finally, this work utilizes an inherently non-linear method to 
robustly model the aforementioned relationships (Table 1).

Description of datasets
The HYCOM dataset

HYCOM is a data-assimilative hybrid isopycnal-sigma-pressure model and part of a 
multi-institutional effort sponsored by the National Ocean Partnership Program (NOPP) 
as part of the US Global Ocean Data Assimilation Experiment (GODAE). Within non-
extreme latitudes (non-polar regions between 80.48°N and 80.48°S), HYCOM data are 
available on a standardized grid.

Data is assimilated from a combination of remote-sensing platforms GFO [1], ENVI-
SAT [37] and Jason-1 [39] which provide information on space-time variability of sur-
face-wind stress, temperature and specific humidity. Vertical profiles from eXpendable 
BathyThermographs, Argo floats and Conductivity-Temperature-Depth sensors enhance 
subsurface variability mapping. However, these profiles are typically too sparse to be 
used by themselves [5].

The resolution of HYCOM data are 0.08 arc-degrees (approximately 9km square). 
The main advantage of the HYCOM data is its indexing of ocean-surface parameters 
by means of z-coordinates. z-coordinates index ocean depth at standard levels, and 
allows for a smooth transition from upper-ocean to deep-ocean layers. This results in 

Table 1  Table summarizing previous related work

Author Main Idea Limitation

Bates et al. [2] Establish time-series for oceanic carbon 
levels using in-situ measurements

Data used was biased to spring-season, and 
relies on seaborne vessels to take measure-
ments

Zui et al. [66] Sea surface temperature and Chlorophyll 
were used to derived POC fluxes

This method did not incorporate salinity data, 
and the validation of results was done using 
point in-situ sources

Dixit et al. [9] MLR and SVM models were compared at 
estimating pCO2

In-situ verification of chlorophyll measure-
ments were not performed, and the accuracy 
was not comparable to previous approaches 
due to limited longitude

Liu W. Timothy [36] An SVM model using SST and SSS to predict 
sea-surface Carbon fugacity

Large data gaps from MODIS sensors resulted 
in the authors using significant smoothing to 
the input data, possibly reducing the model’s 
ability to capture smaller variations

Liu and Xie [35] Carbon dioxide partial pressure was mod-
elled using a linear kernel

The temporal resolution of input data on a 
yearly-basis was objectively low, with large 
gaps in the satellite mapping data. Addition-
ally, the authors highlighted the lack of dense, 
in-situ salinity measurements for model 
verification
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an ease of comparative computations at differing sea-depths. Additionally, there is no 
current single orbiting platform with the necessary spatio-temporal density for infer-
ence of parameters which define latent relationships between observed variables [14, 
42, 43]. The closest comparable earth-observing platform is NASA’s Orbiting Carbon 
Observatories (OCO-2 and OCO-3). However these platforms are targeted to meas-
uring atmospheric carbon levels and do not target the intended, ocean-based carbon.

HYCOM data contain the following combination of oceanic parameters indexed by 
z-coordinates, latitude, longitude, reference date/time and depth:

–	 Downward Surface Flux (heat)
–	 Water Flux into the Ocean
–	 Surface Temperature Trends
–	 Surface Salinity Trends
–	 Ocean Mixed-layer Thickness
–	 Sea Water Salinity
–	 Sea Water Velocity
–	 Sea Water Temperature

For this work, the z-coordinate (depth), location (latitude and longitude), sea water 
salinity si and sea water temperature ti are used where the subscript i ∈ {0, 2} indicates 
depth in meters. Table 2 shows latitude, longitude, temperature (C) and salinity (psu) 
measurements from the HYCOM data for the uppermost z-levels (0m and 2m respec-
tively). In Fig. 1 we provide the mean salinity and mean temperature for the Carib-
bean region at a depth of 0m.

NOAA labelled data

The Ocean Chemistry and Ecosystems Division (OCED) of The National Oceanic 
and Atmospheric Administration (NOAA) focuses on understanding the ocean’s role 
within the context of the global environment. Automated systems for pCO2 measure-
ment were installed on cruise ships of Royal Caribbean International Cruises and sub-
sidiaries Wanninkhof et al. [60] by the NOAA. This system provides measurements of 
multiple ocean water parameters beginning in 2002 and continuing to the present. 
The instruments consist of equilibrators, a condenser, water flow meter, drying tubes 
and additional equipment for analysing the output of the equilibrator [47]. For this 
study data from the Allure of the Seas was used for the period 2019-2020 within the 
Caribbean Region. This data covered the range of latitudes between 11.677◦N  and 

Table 2  Samples of the HYCOM data

lat lon t0 s0 t2 s2

18.520 − 68.327 26.590 35.784 26.476 35.788

25.148 − 77.325 25.252 36.602 25.071 36.608

24.064 − 73.898 26.279 36.585 26.183 36.586

22.559 − 71.743 26.549 36.584 26.405 36.585
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26.817◦N  and longitudes −59.638◦ and −87.675◦ . This resulted in approximately one 
million data tuples indexed spatially containing the following attributes:

–	 Mole fraction of CO2 in the equilibrator headspace (dry) at equilibrator tempera-
ture

–	 Mole fraction of CO2 measured in dry outside air
–	 Mole fraction of CO2 in outside air associated with each water analysis ppm
–	 Barometric pressure in the equilibrator headspace
–	 Barometric pressure measured outside
–	 Water temperature in equilibrator
–	 Sea surface temperature
–	 Sea surface salinity

Fig. 1  Mean salinity (top) and mean temperature (bottom) at 0m for 2019-2020
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–	 Fugacity of CO2 in Sea Water
–	 Fugacity of CO2 in Air
–	 Quality control flags for equilibrator functions

The mean values for the above parameters were found such that the spatial resolution 
matched the HYCOM grids. Two flags in this data indicated nominal operation of 
the equilibrator. Values out of range (negative) and other anomalous instances were 
removed by filtering against these quality flags. The latitude-longitude positions were 
then used to cross-reference the HYCOM data resulting in attributes above (specifi-
cally Fugacity) being indexed by spatial (latitude/longitude) and z (depth) coordinates.

A sample of equilibrator attributes eq, atmospheric attributes atm and sea attrib-
utes sea are given in Table 3. All pressures p are measured in standard hPa, tempera-
tures t are given in degrees Celsius and Carbon-dioxide/Fugacity f are given in units 
of micro-atmospheres.

Carbon fugacity

In order to measure the air-sea exchange of gases, the partial pressure of gas in the 
ocean surface is first determined. The concentration of gas in the equilibrator head-
space (gaseous) is directly proportional to the concentration in the equivalent volume 
of seawater (liquid), parameterized by temperature and salinity [24] and so Cw = αCe.

The instrumentation installed in the ships of Royal Caribbean measures the mole 
fraction of CO2 in dry air which is converted to fugacity by correcting for the non-
ideal gas and the water vapour level [22]. An alternative approach, in determining 
air-sea flux, is given by the difference in partial pressures between the air and sea CO2

However, the wind-speed dependent gas exchange coefficient kg is not precisely known 
and there exists a discrepancy in the global mean values obtained by the two different 
methods [56]. In Fig. 2 we show the relationship between Carbon Fugacity and tempera-
ture (left) and salinity (right) at 0m.

Methods
A supervised learning algorithm models the implicit relationship existing in labelled 
data by means of a set of equations. Given a set of labelled data D, a supervised 
learning algorithm aims to learn the relationship between input attributes X and an 
output attribute y in order to predict the output ŷ given previously unseen X. Super-
vised learning algorithms receive feedback from a loss function, which quantitatively 
informs how closely the model matches the relationships within the data [54]. In our 
case the output attribute y is the fugacity of the partial-pressure of Carbon Dioxide 
which is dependent on the input attributes as determined by a feature-selection pro-
cess. We use a gradient-boosting regression tree which provides a continuous-valued 
output as a nonlinear function of its input attributes.

(1)F = kg
(

pCO2(air)− pCO2(sea)

)
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Decision‑tree regression

The supervised gradient-boosting regression tree (GBRT) iteratively defines a series 
of mappings from a labelled training dataset and progressively refines itself by means 
of an explicit loss function [41]. The GBRT learns an input-output relation by means 
of a series of conditional, thresholding operations. It is able to break down a complex 
decision-making process into a collection of simpler decisions thus providing a solution 
which is often easier to interpret [53]. In other terms, at each stage in the regression tree, 
the output domain is refined by means of an information criteria. The stochastic Gradi-
ent Boosted Regression Tree is adaptable, easy to interpret and produces highly accu-
rate models [61]. The Stochastic GBRT starts with a single decision-tree and iteratively 
appends new trees based on their performance with respect to some objective function. 
The heuristic used to define branching decisions generates splits based on the distribu-
tion of input attributes, and greedily selects new decision trees f based on an objective 
function Z:

A regularization term Ω is included, to prevent over-fitting [63], by means of penaliz-
ing tree coefficients. In order to offset the overhead of the Gradient Boosted Decision 
Tree (GBDT) approach on large datasets, the NVIDIA RAPIDS [18] and the XGBoost 
[6] libraries were implemented on a GPU.

Loss function

A loss function is used to quantify the performance of a given learning algorithm. Many 
loss functions have been proposed for supervised learning however the Mean-Absolute 
Error and Root Mean-Squared Error have become popular in the field of geosciences [4]. 
The MAE metric assigns equal weighting to all errors (known as l1 optimization). If we 
denote ground-truth values as y and predicted values as ŷ , the loss value is directly pro-
portional to the magnitude of divergence in the predicted value ŷ from the ground truth 
label y.

(2)Z =
∑

i

l(yi, ŷ
t−1
i + ft(xi)+

∑

k

Ω(fk)

Fig. 2  Fugacity of CO2 in sea water versus temperature and salinity at 0m
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The Root-Mean-Squared-Error (RMSE) attempts to penalize variance in output predic-
tions by squaring the error term from MAE (also known as l2 optimization):

This results in unequal weighting of error terms, where larger error values are more 
heavily penalized than smaller values.

While the MAE and RMSE have been used as standard metrics for model perfor-
mance for many years, there is no consensus on the most appropriate metric for mod-
eling errors [4]. Additionally, measures based on the sum-of-squared calculation do not 
describe average error alone. The distribution of error magnitudes become more vari-
able in a non-monotonic fashion with increasing error [4].

As a result, the Huber loss is typically used to optimize the regression tree. The Huber 
loss behaves quadratically for small residual errors and linearly for large residual errors 
[19]. The Huber loss is given by the following:

This is equivalent to minimizing the Kullback-Leibler divergence [40] and is hence used 
in robust regression to take advantage of the desirable properties of both l1 and l2 pen-
alties. The Huber Loss is regulated by the hyper-parameter α > 0 . For absolute values 
smaller than α the corresponding distribution resembles the normal distribution while 
for values outside this range it resembles the Laplace distribution. This is the equiva-
lent of a data-defined transition from a quadratic to absolute-valued function [40]. This 
affords the Huber loss a significant advantage in managing outliers (common in remote 
sensing data) when compared to MAE and RMSE.

This loss function is used to guide and actively correct the learning of the stochastic 
GBRT during training and additionally used to validate the stochastic GBRT during test-
ing. A loss function is used to concisely quantify the performance of a machine-learning 
model and its derivative is used to quantify the magnitude of correction required for 
model parameters. Following training, the model is evaluated using the loss function 
and updated based on the magnitude of the errors made. This process is complete when 
the model’s increase in performance (or change in parameters) do not exceed some pre-
defined threshold.

Numerical results
Data selection

Water temperature and Sea-Surface-Salinity at depths of 0m, 2m, 4m, 6m and 8m from 
the HYCOM platform was used for regression [55]. The target data are Fugacity values 
( fCO2 ) for ocean surface water from the NOAA data. Binary interaction attributes were 

(3)MAE =
1

N

N
∑

i=1

|yi − ŷi|

(4)RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2

(5)L(y, ŷ) =

{

(y− ŷ)2 ∀ |y− ŷ| ≤ α

|y− ŷ| ∀ |y− ŷ| > α
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derived from the single attribute values by means of multiplicative combination, for a 
total of 32+5 predictor variables.

In order to determine an optimal set of predictor attributes, statistical p-value testing 
was used to determine the significance of relationship between predictor attributes and 
the target data. A lower p-value indicates a decreased probability of the observed rela-
tion occurring by pure chance. Therefore the chances of disproving a non-trivial rela-
tionship between predictor and target attributes are directly proportional to the p-value. 
Both unary and binary predictor attributes were explored for the prediction task. The 
target size α = 0.05 was used as a threshold to filter non-predictive attributes in both 
unary and binary cases. Stage-wise variable selection was used by means of the method 
of Ordinary Least Squares Regression resulting in the predictor attributes in Tables  4 
and 5, with feature importance for unary predictors being displayed in Fig. 3.

Model selection

Note that we initially investigated three models, Linear Regression, Gradient-Boosted 
Regression Tree and a Deep Neural Network consisting of 15 fully-connected layers. 
These models were trained using GPU libraries and evaluated with the Huber loss func-
tion. Since the GBRT model performed the best we focused solely on that approach. 
However, in order to demonstrate the differences we provide MSE values for the three 
approaches in Table 6.

Table 4  Unary predictors

Attribute p-value

salinity0 0.000110

salinity2 0.001892

temp8 0.009946

Table 5  Binary predictors

Attribute I Attribute II p-value

temp6 temp8 0.000418

salinity2 temp6 0.002439

temp4 temp8 0.002573

salinity2 temp8 0.002829

salinity0 temp8 0.005784

salinity0 temp6 0.006055

salinity4 temp6 0.011255

temp4 salinity4 0.015059

salinity2 temp4 0.019423

temp4 salinity6 0.026789

temp6 salinity6 0.027088

temp2 temp8 0.028429

temp4 temp6 0.035664

salinity0 temp4 0.040986
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The GBRT was implemented using the XGBoost library and NVIDIA RAPIDS on a 
GTX 1060M GPU. Enumerative grid-search was used to tune parameters for the gradi-
ent boosted tree. After 1000 iterations for each combination in the parameter subspace 
the optimal values listed in Fig. 7 were obtained.

Model validation

Ground-truth in-situ measurements were used to validate our model. This target data 
consisted fCO2 in units of micro-atmospheres ( µ-atm). The domain of values for fCO2 
as measured by the equilibrator (for all valid measurements as indicated by the use of 
the quality flag) was [397.68, 492.46] with a mean of 400.73 and a standard-deviation 
of 19.78. Roughly one-third of the training data was reserved for model validation. The 
model was trained using cross-validation and evaluated using the Huber Loss function. 
Using the selected attributes and optimal GBRT, the Huber Loss for fCO2 was found to 

Table 6  Comparing the error values for regression models

Model Huber Loss Mean-
Squared 
Error

Linear regression 6.13 71.93

GBRT 4.39 42.06

Deep Neural Network 5.38 60.21

0 500 1,000 1,500 2,000 2,500 3,000

water temp 0

salinity 0

water temp 2

water temp 8

salinity 8

water temp 4

water temp 6

salinity 2

salinity 6

salinity 4

3,176

3,064

1,524

1,423

1,012

986

949

849

644

592

Fig. 3  Omnibus test values for single parameters

Table 7  Optimal GBRT hyper parameters

Hyper-parameter Value

Maximum tree depth 7

Minimum child weight 5.0

Subsample 0.8

Learning rate 0.01
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be 3.98, or approximately 1% of the mean value for the target attribute which is quite 
accurate.

As shown in Fig.  4, usage of binary interaction variables significantly improved the 
residual distribution of our model prediction. As shown in Fig.  4, the residual (error) 
terms for binary interaction variables are zero-centred with little spread. This is desira-
ble, particularly when compared against the case of unitary predictors. This inconsistent 
spread of high variance (an undesirable property) leads to inconsistent model behaviour. 
In contrast the symmetric, narrow residual distribution for our model with interaction 
variables is indicative of consistent model performance (low variance).

Discussion
Scientific implications

Traditional remote-sensing (satellite-based) approaches do not measure Ocean Carbon 
levels directly. In this work, we investigate and the impact of sea-surface salinity and sea-
surface temperature on the fugacity of Carbon-Dioxide, fC02 , at the surface layer of the 
ocean. This work confirms that SST at 0m is the primary unary predictor on fC02 [35, 
58].

This work does not rely on multiple stationary in-surface installations for the purpose 
of making predictions. Therefore, the model developed in this work can be applied to 
sea-surface areas where in-situ data is not currently available. Moreover, the periodic 
nature of satellite observations enables our model to be the basis for spatial and tempo-
ral analysis. Similarly, our work may be used for the discovery and quantification of both 
Carbon sources and sinks in the open ocean. In this way, the model developed may be 
used to find novel Carbon sinks in the open ocean and quantify the rate of sequestration 
over time without the need for earth-based, surface-level measurements.

The increased longitudinal spread of the in-situ data used greatly decreases the influ-
ence of coastal anomalies on our model’s derivation. This work describes the methods 
by which remote sensing data can be used to indirectly estimate surface oceanic car-
bon content. Moreover, the ability of remotely-sensed data sources to operate in times 
of anomalous weather conditions on a regular, periodic basis establishes a non-trivial 
advantage when compared to earth-borne surface methods.

Fig. 4  Distribution of residuals using only unary predictors (left) and only interaction variables (right)
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As of writing, there is no consensus agreement on the relationship between SST, SSS and 
fCO2 . In order to account for annual weather events, this data period captured an entire 
annual cycle thereby controlling against seasonal oceanic events. This enables our model 
to be used year-round in non-extreme latitudes notwithstanding the non-availability of in-
situ cruise ship measurements.

The low variance and error terms observed from our model is validated using in-situ 
surface data. The validation described in Section 5.3 above shows accuracy greater than 
that which was achieved by a similar global model Liu W. Timothy [36] and Krishna et al. 
[29]. Our work improves upon both of these approaches by incorporating SSS for all data. 
In addition, this work improves upon previous approaches by consideration of binary fac-
tors of influence (see Table 5) and application of an inherently non-linear model.

Some limitations and potential future work

The target area for this work was the Caribbean region and, as a result, is limited to non-
extreme (non-polar latitudes). Additionally, the large-scale, inter-sea mixing of waters is 
left for future investigation. Several studies have investigated the relationship between 
Chlorophyll-A surface concentrations and its impact on surface-level Carbon content. 
Moreover, the impact of wind speed and direction has been shown to influence CO2 flux 
at the sea-air boundary. Future work may potentially explore the usage of multi-modal 
approaches [44], particularly in the field of deep-learning [33], which has proven to be 
useful in handling heterogeneous inputs across multiple fields, including remote-sensing 
[17, 38, 49] Notwithstanding, the relationship between SST and SSS holds as validated in 
5.3. However, this relationship between surface winds and fCO2 at the ocean surface may 
explain outliers observed during the validation process [36].

The Orbiting Carbon Observatory-2 (OCO-2) and OCO-3 are NASA’s first Earth-orbit-
ing satellites dedicated to measuring atmospheric Carbon Dioxide. At the time of writ-
ing, these instruments are dedicated strictly to observing near-infrared CO2 and A-band 
molecular oxygen. However, future orbiting platforms may investigate the relationships 
between surface-level atmospheric concentration and the rate of transfer between air and 
ocean [35].

Conclusion
In this paper, a non-linear model is implemented for satellite data and validated using in-
situ measurements in the Caribbean region. This model exploited the relationship between 
temperature, salinity and sea-surface Carbon concentration to remotely predict surface-
water Carbon content. We found that limiting scope of observations to non-extreme lati-
tudes yielded lower losses when compared to global approaches.

We also found that the usage of binary predictor attributes significantly reduced predic-
tion errors when compared to previous approaches. Additionally, the usage of an inher-
ently non-linear model with the Huber loss-function improved upon previous approaches 
that used linear penalised models. Finally, our results were validated using a rich source of 
in-situ measurements made available via the NOAA. Future work may seek to incorporate 
Chl-a, surface wind-velocity as well as other anthropogenic factors into prediction models.
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