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Abstract—The rapid increase in carbon dioxide in the at-
mosphere and its associated effects on climate change and
global warming has raised the importance of monitoring carbon
sequestration levels. Estimating above ground biomass (AGB) is
one way of monitoring carbon sequestration in forested areas.
Quantifying above ground biomass using direct methods is
costly, time-consuming and, in many cases, impractical. However,
remote sensing technologies such as LiDAR (Light Detection And
Ranging) captures three dimensional information which can be
used to perform this estimation. In particular, LiDAR can be
used to estimate the diameter of a tree at breast height (DBH)
and from this we can estimate its AGB. For this research we
used LiDAR data, along with various Machine Learning (ML)
algorithms (Multiple Linear Regression, Random Forest, Support
Vector Regression and Regression Tree) to estimate DBH of cocoa
trees. Various feature selection methods were used to select the
most significant features for our model. The best performing
algorithm was Random Forest which achieved an R

2 value of 0.83
and Root Mean Square Estimate (RMSE) value of 0.062. This
algorithm then estimated an AGB value of 28.75 ± 2.34 Mg/ha
(Megagram per hectare). We compared this result with that
obtained from locally-developed allometric equations for the same
cocoa plot. The comparison proved our estimate to be 14.7%
lower than the allometric equation. The results demonstrated
that using ML with LiDAR measurements for AGB estimation
is quite promising.

Index Terms—Above Ground Biomass, AGB, LiDAR, Machine
learning, Random Forest, Regression Tree, Regression, Forest
Variable Estimation, Climate Change, Carbon Sequestration

I. INTRODUCTION

Within recent decades, climate change and its effects have

grown in importance. Without immediate intervention to re-

duce global greenhouse gas emissions, climate models es-

timate an increase of over 2◦C in global temperature from

pre-industrialized levels [1]. Carbon dioxide is the main

greenhouse gas that is produced because of human activities,

comprising an estimated 79% of total U.S. greenhouse gas

emissions in 2020 [2]. Due to human activity since the Indus-

trial Age, the proportion of carbon dioxide in the atmosphere

has increased by 45% from 280 to 412 ppm (parts per million)

in 2019 [3]. The effects of further increases in atmospheric

carbon dioxide and global temperature can lead to serious

consequences for the environment and human life. As such,

new protocols and strategies have been put in place to manage

and reduce carbon emissions.

The occurrence of carbon fluxes, which is the transfer of

carbon from one pool to another [4], within the last few

hundred years, have led to carbon being locked away in

continental crusts and oceans. The extraction of fossil fuels and

other resources due to mining and deforestation, have resulted

in the release of the stored carbon into the atmosphere.

Atmospheric carbon can be managed in several ways, such

as reducing fossil fuel consumption from industrial activities,

utilizing alternate energy technologies like renewable energy

resources and increasing carbon sequestration throough exist-

ing carbon pools. The latter is the process of increasing the

carbon content of a carbon pool other than the atmosphere

[4]. One of the more sustainable and cost-effective methods of

sequestration can be achieved by using forests and vegetation

as a carbon pool. In forest systems, carbon is stored in the

vegetation, including the root system, dead wood, litter, and

the soil, by absorbing carbon from the environment. The AGB

in the vegetation consists of stems, branches, and foliage. It

usually comprises between 35-65% of the total dry weight.

This provides a measure of how much carbon is stored by

a tree. Variation in biomass per tree is due to differing tree

species and climate conditions.

Cocoa, a woody plant, is one of the commodities grown in

plantations that span many hectares and has been described in

some cocoa producing countries, such as Indonesia, as being

strategically placed to increase carbon sequestration efforts

[5], [6]. The increasing cost and demand for cocoa provides

financial incentives for the development of cocoa plantations.

These plantations contain shade trees that protect the young

cocoa trees and thus, are classed as a cocoa-based agroforestry

system [7]. These systems, once sustainably maintained, pos-

sess significant economic and carbon sequestration potential

[8].

Carbon dioxide absorbed by cocoa plants under optimal

conditions have been observed to be 80 Mg/ha/year while

releasing 63 Mg/ha/year. When fruit production and other

processes are taken into account, the yearly net uptake is 73

Mg/ha/year [5], [9]. In Indonesia, carbon stock analysis for

cocoa plantations have reported carbon sequestration levels

ranging from 25.52 Mg/ha to 33.19 Mg/ha [5] whilst in Central

America, levels were estimated at around 49 Mg/ha [6].

Estimating the biomass of trees is therefore very important

when monitoring carbon sequestration levels. However, exact

methods of biomass calculation involve the use of destructive

methods to determine the dry weight of the entire plant.

Allometric equations are a non-destructive alternative that have
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been used to estimate tree biomass based on its relationship

with the different tree components.

Gathering information for allometric modelling is time

consuming and expensive especially in areas where forest in-

ventories do not exist. LiDAR is a remote sensing technology,

which allows data collection in a quick and efficient manner.

The best use of this technology is its application collecting

data in remote areas that are too difficult or costly to navigate.

This type of technology not only allows for accurate data to

be obtained but also reduces the need for destructive methods.

Trinidad and Tobago is a country that is well-known for

the high quality cocoa it produces. Cocoa production has

plummeted within the last several decades from 30,000 tons

to around 500 tons [10]. In recent years, the government has

expressed great interest in revitalizing the cocoa industry in the

country due to the increasing global demand for high quality

cocoa [11]. There is limited data on tree canopy and density

for local cocoa plantation, resulting in inaccurate and outdated

land use information. The revitalization and establishment of

cocoa plantations can play an important role by reducing

global carbon footprint and increasing the economic gain

associated with a rise in cocoa production. This study therefore

seeks to estimate the biomass of a cocoa plantation using

LiDAR technology and small-scale tree sampling to aid in

carbon monitoring efforts throughout the twin island country.

Our field sampled data was comparatively small for typical

machine learning applications. As a consequence, various

methods were used to avoid over-fitting.

II. RELATED WORK AND CONTRIBUTIONS

Many studies have been conducted to estimate the AGB with

different types of climate conditions and tree species. These

studies typically create equations to quantify the biomass

using allometric modelling with metrics derived from LiDAR.

Others have used remote sensing techniques to estimate forest

variables from which computations regarding tree biomass can

be achieved. In recent years, machine learning algorithms have

been applied with LiDAR data to estimate the AGB of many

forested systems.

Traditional allometric modelling, undertaken by Patenaude

et al., [12] utilized LiDAR to quantify the AGB of the

temperate woodland in the Monks Wood Nature Reserve.

This was achieved by developing an equation to calculate

the biomass. In-depth field data collection was required and

involved grouping trees of similar species, composition and

structure from which a grid of 10, 20 × 20 m plots were

created from the 10 groupings. From this, one sample plot

from each grouping was chosen where all the trees with a

diameter at breast height (DBH) greater than 7 cm were

counted and measured. The total foliage, ground vegetation

and litter carbon content were calculated using species specific

allometric equations.

LiDAR data was used to generate a DTM raster using

the triangular irregular network (TIN) based on a Delaunay

triangulation [12]. The DTM was subtracted from the canopy

elevation layer to generate a canopy height model (CHM).

The results showed that the CHM consistently underestimated

the tree heights from the reference data. Canopy density

and structure as well as the configuration of the LiDAR

were identified as possible causes for the underestimation.

The equation to estimate the biomass utilized height metric

percentiles derived from LiDAR as the predicting variable.

This model obtained a R2 of 0.74 on the field level and

0.85 on the plot level. This study showed that good results

can be obtained without applying complex machine learning

algorithms with the data. A similar approach was done in [13]

to estimate the AGB of a subtropical forest in Hong Kong.

Varying the plot size used for biomass estimation in this case

significantly affected the performance of the models. A plot

size of 10 m2 provided R2 results as high as 0.864.

Most of the studies done to derive allometric equations

for a particular area employ stepwise regression for AGB

estimation. Within the last decade, the application of ML

algorithms to model forest data has increased, with better

performing models being created. Gao et al. [14] compared

the performance of five ML algorithms on optical and radar

data obtained from Landsat Thematic Mapper (TM) and ALOS

PALSAR (Advanced Land Observing Satellite-1 Phased Array

type L-band Synthetic Aperature Radar) respectively. AGB

sample plots, Landsat imagery, ALOS PALSAR L-band data,

digital elevation model data and classified images of forest

types were processed and variables extracted. Feature selection

was done using Stepwise Regression and Random Forest

from which biomass estimation models were developed using

Multiple Linear Regression, Random Forest, Artificial Neural

Networks, Support Vector Regression and k-Nearest Neigh-

bours. Overestimation and underestimation of small and large

AGB values were observed respectively. The Multiple Linear

Regression performed best within an AGB range of 40–120

Mg/ha, whilst performance of the other ML algorithms was

limited [14]. Artificial Neural Networks were deemed the best

performing model within the study and Random Forest and

k-Nearest Neighbours performed poorly.

Torre-Tojal et al. [15] used LiDAR data in northern Spain

to estimate the AGB using Random Forest models. Allometric

equations were applied to calculate the AGB based on the

geographical proximity and tree species. LiDAR data was pre-

processed to coincide with the ground measurement circular

plots of 25 m radius in which individual digital terrain models

(DTMs) and digital surface models (DSMs) were extracted to

generate the canopy height model (CHMs). FUSION/LDV and

PostGIS software were used to obtain 65 variables for biomass

estimation. The Gini Importance was used as the feature

selection method to assess and reduce the number of variables.

Hyper-parameter tuning on 6 hyper-parameters of the Random

Forest algorithm was done to optimize the performance of

the models created. Model assessment and validation was

done using 2-fold cross validation with the R2 and RMSE

performance metrics. Two of the models created performed

well with R2 values 0.726 and 0.708. Overestimation of the

biomass using the two models were between 16% and 18%

when compared to the ground truth biomass calculations.
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Biomass estimations are most frequently conducted at plot

level as it reduces the number of resources that would be

needed. In [16] the authors applied image segmentation on

LiDAR data to estimate the biomass of forested areas in

Arkansas and Texas using three ML algorithms. The image

segmentation technique groups individual pixels of similar at-

tributes, [16], as well as incorporating spatial correlation. The

study involved deriving height metrics from the LiDAR data,

applying image segmentation to identify homogeneous forest

units, building regression models based on the image segment

data [16] and comparing the performance of the models with

in-situ biomass measurements. Model performance of Regres-

sion Tree, Random Forest and Support Vector Regression were

assessed and validated using a 10-fold cross validation. The

training and validation accuracies obtained at both locations

were extremely high, with adjusted R2 values reaching 0.99

and 0.902 respectively. However, the performance was mainly

based on the neighbourhood size used for image segmentation.

Support Vector Regression and Random Forest were shown to

produce the best performing models for this study.

Biomass components and forest variables can also be es-

timated using LiDAR technologies. He et al. [17] estimated

foliage, fruit, crown, stem, branch and AGB of a coniferous

forest in western China using predictors extracted from LiDAR

metrics. LiDAR metrics derived from CHM were then used

to model the respective biomass components. The biomass

equations used were a function of the DBH and total height for

each respective component. The field measurements were used

to compute the biomass of each of the components which were

used to train Stepwise Regression models. Results from the

regression produced adjusted R2 values ranging from 0.749

to 0.356. Lower adjusted R2 values were obtained from the

biomass modelling of the smaller components such as foliage

and fruit. Adjusted R2 values for the total above ground

biomass was 0.727. Zhao et al. [18] also utilized LiDAR data

to extract forest stand parameters in the Dayekou forest, China

using the Sparse Bayesian Regression model instead of typical

regression techniques to offset the large amount of plot data

usually required [19]. LiDAR data was used to extract 76

predictor variables based on height percentiles for the first and

last pulse returns and individual mean heights and ratios of first

and last pulses. The leave-one-out cross validation method was

used to evaluate the performance of the models on predicting

the mean height, average DBH, basal area and stand volume.

The respective R2 values obtained for each were 0.744, 0.720,

0.562, and 0.696.

Järnstedt et al. [20] compared the use of a photogrammetric

surface model and ALS (airborne laser scanning) LiDAR data

to estimate the forest variables diameter, mean height, basal

area and volume of growing stock in Southern Finland. A high-

resolution DSM was generated from the radiometric resolution

of the aerial imagery combined with the TIN algorithm.

Metrics extracted from both methods included the minimum,

maximum, average and mode height values as well as the

proportion of values from increasing percentile heights [20].

To reduce the dimensionality of the data, forward stepwise

Fig. 1. Satellite view of study area, coordinate reference system.: WGS 1984,
UTM projection Zone 20N

regression was done. The k-nearest neighbours estimation

method along with the leave-one-out cross validation tech-

nique was used for variable estimation. The accuracy of

the models was measured by the RMSE%, with comparable

results being obtained from the photogrammetric model and

the LiDAR model.

In Otsu City, Japan, Iizuka et al. [21] utilized unmanned

drone imagery to collect aerial photos of the region. Pho-

togrammetric processing was applied to generate DTMs and

DSMs and extract the CHM. Laser technology was used to

collect DBH and total height measurements for 51 individual

samples to correlate with the aerial data. Regression analyses

were used to estimate the tree height and DBH. The predictors,

canopy area and canopy width, were found to predict DBH

relatively well with R2 values of 0.792 and 0.779 respectively.

Tree height estimation performed poorly with a R2 of 0.208

mainly due to density of the forested area and the inability to

detect smaller trees from an aerial view.

Our contribution is the application of Machine Learning

techniques using LiDAR data for Cocoa Plantations in a Small

Island Developing State. Cocoa grows best in hilly terrain

where it is difficult to take measurements manually. We believe

that our results can be useful to other countries that seek to

estimate carbon sequestration of their cocoa plantations.

III. DATA AND METHOD

The study area lies within a 100-acre region which makes

up the International Cocoa Genebank (Figure 1) located in

the La Chaguaramus Estate, Centeno, Trinidad. The Genebank

consists of a large variety of some of the world’s most

diverse public collections of cocoa plant material. The different

species of cocoa available at the genebank include Theobroma

cacao, Theobroma grandiflorum, Theobroma speciosum, Theo-

broma microcarpum and Theobroma obovatum [22].
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A. Field Data

Field data collection was conducted in Field 5B – Section

F which spanned an area 0.9836 hectares. Field measurement

data for 52 trees were established in the field at an accuracy

of 1.5 m using Global Navigation Satellite Survey equipment.

Measurements included data on the location, girth and height,

of the trees. Within the area of interest, 957 cocoa and 37

shade trees were detected from the field survey.

B. LiDAR Data and Processing

The airborne LiDAR data was collected in 2014 and has

now been curated by the Lands and Surveys Division. The ex-

tent of the LiDAR coverage is a 2 km2 area spanning 685000,

687000, 1169500, 1170500 (xmin, xmax, ymin, ymax). The

coordinate reference system used was that of WGS 1984 with

a UTM projection, Zone 20N. The entire area consisted of

11.18 million points with a density of 5.6 points/m2 and a

pulse density of 2.7 pulses/m2. The data was broken up into 8

blocks, each with an area of 250 m2. Section F (Figure 1), the

study area, contained 77.5 thousand points with a point density

of 7.88 points/m2 and a pulse density of 3.44 pulses/m2.

Ground classification of the LiDAR point cloud was done

using the Cloth Simulation Function (CSF) developed by

Zhang et al. [23]. DTMs are used to model the ground ele-

vation, slope and other hydrologic and environmental features

and can be generated from in-situ measurements using Global

Positioning Systems [24]. The invert distance weighting (IDW)

method, which is one of the main methods used in spatial

interpolation [25], was used to generate the DTM. To predict

the value of an unsampled point, the weighted average of the

known values within the defined neighbourhood [25] was used.

The resolution was set to 1 square metre to create the model.

The parameters, k and p representing the number of k-nearest

neighbours and power respectively, were set to 10 and 2.

Next the point cloud was normalized by subtracting the

DTM raster elevation from all the non-ground returns that were

previously classified so that the elevations would be relative

to the surface that represents the ground. With the normalized

point cloud and elevations all being relative to the ground, a

CHM representing the surface of the canopy was created using

the point-to-raster algorithm [26]. Here the pixel size was set

to 1 where Triangular Irregular Network processing was used

to remove the occurrence of empty pixels and reduce edge

artifacts.

To estimate the AGB, individual trees must be detected.

This was done by applying a local maximum filter (LMF)

to distinguish between individual treetops. Application of the

LMF was done on the CHM raster using a fixed window size,

of 2.5 m. This allowed for the evaluation of the neighbourhood

points within a 1.25 m radius circle to determine the local

highest point which would represent the treetop.

Due to the limited information available for the trees,

individual tree segmentation was also done on the CHM raster

using the Dalponte2016 algorithm developed by Dalponte and

Coomes [27]. This technique involves identifying individual

tree crowns from airborne LiDAR data using a region-growing

algorithm [27] which has the ability to identify individual tree

species. The crown area definition and metrics were extracted

for model creation. This was merged with the individual tree

dataset containing (a) the height distribution, percentile and

cumulative percentage variables, (b) the intensity distribution

percentile and cumulative percentage variables and (c) the

return metrics of the LiDAR data, to create the final dataset

of 57 variables. Field measurements in Section F sampled 52

trees. These were correlated with the individual tree metrics

based on height and location.

C. Feature Selection

Selecting the most relevant variables from the raw data

plays a significant role in the accuracy of the model especially

when there are many variables in the dataset. Feature selection

reduces the number of variables by choosing those that are

not correlated or biased. This not only increases the model

performance, but also decreases the computational load. We

investigated three feature selection methods, Boruta, Gini Im-

portance and Stepwise Regression. They utilize both machine

learning and statistical models to determine which variables

have the best predictive power.

Boruta uses a wrapper approach built around the Random

Forest machine learning algorithm [28]. Two iterations of the

algorithm were able to reduce the number of independent

variables by classifying them into two categories: important

and unimportant.

Gini Importance, also known as Mean Decrease in Impu-

rity (MDI), can be implemented in the Random Forest algo-

rithm as a feature selection method. The feature importance

for each attribute is calculated as the sum over the number of

splits (across all trees) that include that feature, proportionally

to the number of samples it splits [29]. Here, the pre-processed

dataset was partitioned into 70% training and 30% testing sets

(n = 52). The training partition was used with the Random

Forest algorithm to create a model where each of the attribute’s

importance was evaluated. The attributes with values over 0.01

were used for model building.

Stepwise Regression is used when selecting explanatory

variables for a Multiple Linear Regression model by adding

and deleting variables based on their computed statistical

values. A Linear Regression model using the pre-processed

data was first created. Then, the Akaike Information Criterion

(AIC) was used to determine the most significant variables.

D. Model Description and Validation

The datasets derived from each of the three feature selection

methods as well as the full dataset, were used with multiple

ML algorithms to determine which would perform best at

predicting values for the DBH. The ML models included

Multiple Linear Regression, Random Forest, Support Vector

Regression and Regression Tree. The models were trained on

70% of the dataset and tested on 30% (n = 52).

We used a 10-Fold Cross Validation in our analysis, splitting

the dataset into 10 equal subsets. This approach uses one

subset at a time for testing while training is performed on
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the remaining 9 subsets. The error for the test set is computed

for each run and the average over the 10 runs is computed

and reported. Errors were only computed for the test set

samples (which were distinct from the corresponding training

set samples for that run) and hence training set errors were

not included in our results. Hence any over-fitting would

potentially result in poor reported results. A more detailed

explanation of why K-Fold Cross Validation detects over-

fitting can be found in [30].

E. Above Ground Biomass Estimation

Allometric equations used in biomass estimation are useful

since it allows the biomass for large areas such as forests and

plantations to be estimated without having to use expensive,

time-consuming or destructive methods. Allometric equations

use metrics derived from the DBH and the height of sample

trees to estimate the dry weight volume or biomass of the tree

[31].

To estimate the AGB, the two best performing models were

used to predict DBH values for the 957 trees detected from the

LiDAR data. This comprised of the two main types of trees,

cocoa and shade trees, providing metrics for both. Shade trees

are significantly taller than cocoa tress and hence the trees

could be categorized by height. Trees with a height greater

than 9 m were classed as shade trees whilst those lower were

classed as cocoa. Next, individual tree allometric equations

were used to calculate the AGB for each of the cocoa and

shade trees which were identified as part of the Erythrina

species.

The allometric equation for cocoa trees was taken from

Mustari et al. [5] and is given by BK = 0.1208D1.98

where BK is the dry weight (kg/tree) and D is the DBH

in centimeters. The allometric equation for the shade trees

was taken from Rojas-Garcı́a et al. [32] and is given by

AGB = 0.0433D2.3929.

IV. NUMERICAL RESULTS

Tree detection and segmentation done on the CHM identi-

fied 957 trees out of the 994 trees within the area. This resulted

in a 96.28% detection rate. The total metrics obtained from

the LiDAR data included 57 variables consisting of the crown

area shown previously and the 56 standard metrics associated

with elevation (variables starting with z), intensity (variables

starting with i), and returns (variables starting with p). Each

feature selection method produced its own set of variables

deemed significant. From the 57 variables, Boruta reduced

the number to 7, Gini Importance reduced the number to 12

and Stepwise Regression reduced the number to 8. These are

provided in Table I.

Four ML algorithms, with 10-fold cross validation, were

tested with and without each of the feature selection meth-

ods described previously. These algorithms, Multiple Linear

Regression, Random Forest, Support Vector Regression and

Regression Tree, were used to predict the values for the DBH

of the trees. Hyperparameter tuning was done on the Random

Forest, Support Vector Regression and Regression Tree ML

TABLE I
SUMMARY OF FEATURES SELECTED FOR EACH METHOD

Feature Selection Variables

Boruta zmax, zsd, zq80, zq85, zq90, zq95, zpcum1

Gini Importance zsd, zmax, zkurt, zq90, zq95, zq80, zpcum1,
zpcum6, zpcum7, zpcum8, zpcum9, imean

Stepwise Regression zmax, p2th, p4th, imean, zpcum6, zpcum4, p1th,
zq35

Fig. 2. Comparison of R2 values for test samples for each model

algorithms. We computed two performance metrics, the R2

metric and the Root Mean Square Error (RMSE) metric both

with 10-fold cross-validation.

These metrics are defined as follows. If we assume N

test samples and denote the set of true values by yi and the

corresponding predicted values (using the training set) by pi
then

RMSE ≡

(

1

N

N
∑

i=1

(yi − pi)
2

)

1

2

(1)

and

R
2
≡ 1−

∑

N

i=1
(yi − pi)

2

∑

N

i=1
(yi − ȳ)2

(2)

where ȳ represents the average over all target values of the

training samples. The R2 values for the test samples (with

10-fold cross validation) are provided in Figure 2. The RMSE

values are provided in Table II.

Of all the feature selection methods used, the variables

selected from Boruta performed best with testing based on

the results of the ML models applied. Each of the algorithms

used obtained relatively low RMSE values when compared to

the same models using a different set of features. The two

best performing models were Random Forest using Boruta

feature selection (highest performing on the testing data) and

the Random Forest using stepwise regression (second lowest
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TABLE II
RMSE VALUES FOR TESTING SAMPLES FOR EACH MODEL

Algorithm All Boruta Gini Im-

portance

Stepwise

Regression

Multiple Linear
Regression

1.242 0.080 0.095 0.072

Random Forest 0.075 0.062 0.072 0.066

Support Vector
Machine

0.087 0.076 0.087 0.074

Regression
Tree

0.074 0.072 0.075 0.086

TABLE III
BIOMASS ESTIMATES USING THE TWO BEST PERFORMING MODELS

Feature Selection Algorithm AGB (Mg/ha) % difference

Boruta Random Forest 28.75 ±2.34 -14.69

Stepwise Regression Random Forest 28.10 ±2.27 -16.62

RMSE). These results were then used to predict the DBH

values for each of the 957 trees detected. The respective

allometric equations were then applied to the cocoa and

shade trees to obtain the AGB for each. The generic forestry

allometric equation was applied to the data from the 994 trees

identified in the satellite survey of the area to compare the

accuracy of the estimations. This is given by the formula:

VOB = WD× BEF, where VOB is the volume from buttress

to crown, WD is the volume-weighted average wood density

and BEF is the biomass expansion factor set at 1.0989. The

total above ground biomass obtained using each of the models

are provided in Table III.

A raster image with a resolution of 10 square metres (Figure

3) was used to display the estimated AGB values from the

best model, the Random Forest using Boruta variables. The

individual tree values were summed for each 10 square metre

pixel.

V. DISCUSSION

The aim of the study was to combine LiDAR data with

small sample field measurements to get an approximation of

the tree variable, DBH, which in turn, would be used in AGB

estimation. The area of interest constitutes a small section of

cocoa and shade trees that form part of the 0.4 km2 cocoa

estate. Point classification showed that much of the vegetation

observed from the LiDAR data were assigned to either low

or medium vegetation with a few points within the area of

interest being classed as high vegetation. This corresponded

with the field survey data which identified 957 cocoa trees

and 37 shade trees of which the latter was of a significantly

greater height than that of the cocoa.

For CHM generation the original Point-to-Raster CHM

produced some empty pixels, which was one of the drawbacks

of this algorithm. Further processing to fill the output was

Fig. 3. 10 m × 10 m raster image showing spatial distribution of estimated
AGB: Values are in Mg/ha

done using TIN to get a better model. However, some edge

effects were still seen using this method likely due to the

irregular shape of the area clipping. Tree density within the

area was relatively high, with approximately 1000 trees per

hectare. The high density proved problematic when detecting

and segmenting individual trees within the point cloud and

caused issues when correlating the field measurements to the

detected treetops. The number of trees detected by processing

LiDAR data did not exactly match with the numbers obtained

from the field survey (96.28% detection) and such would

result in some underestimation of the total AGB values as

was observed. Edge effects, from the clipping of the area of

interest, caused points from trees to be cut off leading to some

of the segmented trees not being representative of the ones on

the ground. Inaccuracies in modelling the data may also result

from this. The sample data had sparse observations for trees

greater than 7 metres and, as such, training on this height range

would be limited.

The four ML algorithms, Multiple Linear Regression, Ran-

dom Forest, Support Vector Regression and Regression Tree

were applied with the three feature selection methods as well

as with all 57 variables to predict the DBH for all the trees.

The RMSE and R2 values on a 10-fold cross validation were

used as the main metrics to assess the performance of the

models. The 10-fold cross validation was used because of

the small training set available and reduced the likelihood of

overfitting. This method divided the training data into 10 equal

subsamples in which for each of the 10 iterations, one of the

subsamples would be used for testing while the other 9 are

used for training. The sum of the errors for each of the 10 test
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sets was found and the average computed. In this approach

only the error for the test sets was computed. These are distinct

from the corresponding training set for that iteration and such

any overfitting of the model would be reflected in the results

obtained.

Figure 4 shows the distribution of the errors obtained for

each feature selection method with each ML algorithm. No

outliers were detected in any of the MLg algorithms used in

the Boruta and Stepwise Regression feature selection models.

The models that utilized the variables chosen from the Gini

Importance feature selection method was seen to perform the

worst overall with large errors. Here, the distribution of the

errors in the Multiple Linear Regression model was large,

whilst in the other models, outliers were detected. The errors

were very large in the Multiple Linear Regression model

using all the variables as well, with some predicted values

obtaining an error as large as +3.6 m. Taking a closer look

at both feature selection methods, Gini Importance and all

features, it was observed that these used a large number

of independent variables to generate the models. This large

number of variables may have resulted in over complicated

models that overfit the random noise in the training data

and so performed poorly on the testing data. Random Forest

and Regression Tree ML algorithms still performed relatively

well, and this was likely due to each of these having their

own feature selection process within the algorithm that would

choose the best features for the model.

The R2 value for the Random Forest using Boruta was

0.832 with an RSME of 0.062 m. This meant that 83.2%

of the variation in the DBH was explained by the model

and that the average size of the error when estimating DBH

was around 0.062 m. Similarly, for the Random Forest using

Stepwise Regression, R2 was 0.757 and RSME was 0.066

m. The distribution of the errors (Figure 4) in these models

were seen to be small when compared to the other models.

The RMSE values (Table II) and the high R2 values obtained

from the Random Forest models from the Boruta and Step-

wise Regression feature selection models, provide sufficient

evidence that these were the best performing models from the

study.

The predicted DBH values were used with generalized

allometric equations based on the climate and area of the

forest. The AGB estimates from allometric modelling done

in similar latitudinal areas were found to be between 25.52

and 54 Mg/ha. The AGB estimate computed using the generic

allometric equation was found to be 33.7 Mg/ha. Estimations

from the models created in the study were: 28.10 Mg/ha

and 28.75 Mg/ha using the Random Forest algorithm with

Stepwise Regression and Boruta variables resulting in a -

16.62% and -14.69% difference respectively. The Random

Forest model using Boruta variables performed best, with the

smallest percentage difference from the AGB estimate. These

results fall within the range of previous studies done using

Random Forest to estimate AGB such as in [15]. This study

produced two models that resulted in differences of 16.13%

and 18.44% from the AGB value obtained from ground truth Fig. 4. Distribution of errors for each Feature Selection and Model (in metres)
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measurements.

The results also show that, although there are some caveats

with using Stepwise Regression techniques, model perfor-

mance is still very good and comparable with other feature

selection methods. Improvements to the study include testing

different shapes such as a circle or rectangle to reduce edge

effects for better processing of the DTM and CHM. A more in-

depth look at the shade trees within the area of study would

also be required to determine if tree species, other than the

Erythrina, comprised the shade tree population. The use of

higher density LiDAR would aid in increasing the detection

and segmentation of individual trees as the point density of

that used was relatively low at 7.88 points/m2. Increasing the

number of samples used for training, as well as, having sample

tree measurements within the different height ranges that better

represent the distribution of trees in the area would greatly

improve the performance of the models.

VI. CONCLUSION

The tree variable of concern, diameter at breast height, was

estimated using descriptive metrics derived from LiDAR. Due

to the high density of trees within the study area, tree detection

accuracy was marginally lower, however, it was able to detect

approximately 96% of the trees. Feature selection methods,

Boruta and Stepwise Regression were shown to improve the

performance of the ML models created when compared to

the models created using all of the features. The estimated

biomass values from the two best performing models were

close to that of the value obtained using the generic Allometric

equation. The proposed approach is less costly and more

efficient than traditional methods especially when large areas

must be assessed. It is our intention to carry out additional

experiments in order to improve upon the results obtained from

this research so that we may test our methodology throughout

the twin island state.
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