
International Journal of Data Science and Analytics

https://doi.org/10.1007/s41060-023-00392-x

REGULAR PAPER

A data science approach to risk assessment for automobile insurance
policies

Patrick Hosein
1

Received: 13 September 2022 / Accepted: 5 March 2023

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

In order to determine a suitable automobile insurance policy premium, one needs to take into account three factors: the risk

associated with the drivers and cars on the policy, the operational costs associated with management of the policy and the

desired profit margin. The premium should then be some function of these three values. We focus on risk assessment using a

data science approach. Instead of using the traditional frequency and severity metrics, we instead predict the total claims that

will be made by a new customer using historical data of current and past policies. Given multiple features of the policy (age

and gender of drivers, value of car, previous accidents, etc.), one can potentially try to provide personalized insurance policies

based specifically on these features as follows. We can compute the average claims made per year of all past and current

policies with identical features and then take an average over these claim rates. Unfortunately there may not be sufficient

samples to obtain a robust average. We can instead try to include policies that are “similar” to obtain sufficient samples for

a robust average. We therefore face a trade-off between personalization (only using closely similar policies) and robustness

(extending the domain far enough to capture sufficient samples). This is known as the bias–variance trade-off. We model this

problem and determine the optimal trade-off between the two (i.e., the balance that provides the highest prediction accuracy)

and apply it to the claim rate prediction problem. We demonstrate our approach using real data.

Keywords Risk · Motor insurance · Machine learning · Premium pricing · Claims prediction

Mathematics subject classification 62-08 · 62-11 · 68T09 · 68T99

1 Introduction

Traditionally insurance companies have determined automo-

bile policy premiums using rate tables computed by Actuaries

[9]. Today, however, the vast amount of data collected in

electronic form can now be used to determine more suit-

able premiums for a given policy since such data can be

used to better predict risk [5]. Furthermore, by using data

from present and past customers, the predictions are better

suited for the particular environment in which the insurance

company operates. This form of personalized policies ben-

efit the customer (who pays an amount more in line with

their risk) as well as the insurance company (which can

now better ensure that it can safely cover claims costs from
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risky policies). The typical approach is straightforward. For

a given new customer, one can use historical data of past

and present customers with similar characteristics (features)

to better estimate the risk level of the new customer and

then use this to determine a premium for their policy. This

is similar to recommender systems used by companies such

as Netflix. In that case, movies are recommended to an indi-

vidual based on movies that were enjoyed by customers with

similar characteristics (collaborative filtering). In the case of

insurance, one must recommend a policy that is both desir-

able to the customer (through personalization) and profitable

to the insurance provider.

2 Related work and contributions

Many past papers have focused on recommender systems

for insurance companies where one of a small number of

insurance products is offered. In [17,18], they used historical
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data of existing and past customers to determine the most

suitable policy for a new customer. In this case, a relatively

small number of insurance products are available, and hence,

the number of customers who have been using a specific

product will be sufficiently high so that the sample size is not

an issue when computing the recommendation. The paper

[14] also addresses the same problem but focuses on speeding

up the computation of the recommendations. The papers [2,

10] do address personalized auto insurance premiums but

they focus on using Telematics data to do so. Such devices

are not available from all insurance companies and hence

have limited applicability. The authors in [6] use fuzzy logic

to come up with a rule-based approach to risk. In our case,

we use a data science approach and focus on personalization

while using traditionally available data.

Several papers also focus on risk assessment. In general,

few customers make claims during a year. Furthermore, the

claims that are made vary widely from minor incidents (such

as a scratched bumper) to major ones (such as when a car has

to be written off because it cannot be repaired). This results

in a large variation in the average annual claims made by a

customer making it difficult to predict. Therefore, papers gen-

erally focus on predicting either severity (the expected claim

value given that a claim is made, [17,19]) or frequency (the

expected number of claims made per year, [3,15]). Another

typical metric is the loss ratio which is the ratio of the claims

made to the premium charged ( [7,20]). We focus on a more

direct measure which is the average total value of claims

made per year for a given policy (shortened to simply claims

rate) which can be thought of as the product of severity and

frequency and hence captures both metrics. As mentioned

before, predicting claims rate can be challenging because

of its high variance. A significant number of samples are

required for a good estimate, but as one tries to achieve greater

personalization the number of available samples decreases.

We investigate the optimal trade-off between these objec-

tives.

Note one potential issue of recommender systems is the

following. The recommender system chooses the most appro-

priate product for the customer, but this may not be a very

profitable product for the company and so this trade-off must

be taken into account (see [12] for a more detailed discussion

on this issue). In our case, we need not worry about this issue

since we are focusing on providing the most suitable (unique)

product and the premium is then determined to achieve an

acceptable profit for each unique policy.

The article [1] summarizes the presentations in the 2018

Swiss Risk and Insurance Forum. In particular, they dis-

cussed how data science is being used by actuaries to predict

automobile insurance risk. They state that “The current chal-

lenge consists in designing and applying effective regression

techniques to find an appropriate function that links response

variables like the number of claims, the yearly aggregated

claim cost, or the remaining time up to the next policyholder

event (e.g., claim, lapse) with a highly increasing number

of features that include traditional ones and new ones like

telematics data, data coming from the Internet of Things,

as well as web-based data, including the purchasing strat-

egy of the customer during the acquisition process.” We

address this challenge by predicting risk of a new policy-

holder given demographic and automobile features. Such is

the case in developing countries where sensor-based infor-

mation (telematics and those from Internet of Things) is

not easily available. Furthermore, using customer-specific

information (such as Telematics) can be considered as a

content-based filtering approach recommender system which

suffers from the cold-start issue (how do you make a risk

prediction for a new customer). Our approach follows a col-

laborative filtering recommender system approach by using

data from other policyholders to make a prediction for a new

customer.

Actuaries have begun using more machine learning

approaches to risk prediction such as those presented in [4,8].

However, here they focused on claim frequency and severity

predictions separately under the assumption of indepen-

dence. However, [13] demonstrates that this is not necessarily

true. We do not make this independence assumption and

instead predict total annual claims which takes into account

frequency and severity. One issue in jointly considering fre-

quency and severity is the reduction in the samples available

for a given Tarif class. Our approach addresses this problem

by trading personalization for robustness in such cases.

Instead of a finite number of products (tarif class approach)

from which to choose for customer offerings, we provide

a unique (personalized) product to each customer. Further-

more, we only take into account demographic and other data

collected from each policy but do not consider Telematics

data. Naturally our approach can include such data as well

and we plan to address this integration in future work. There-

fore, our contributions can be summarized as follows:

Claim Rate Prediction: We are predicting annual claim

amounts rather than claim frequency or claim severity

(which tend to be correlated).

Personalization versus Robustness: We are making a

personalized prediction instead of predicting for a Tarif

class (in which customers are clustered and all customers

within a class are assumed to pose the same risk). Our

approach adjusts the degree of personalization based on

the number of available historical samples with similar

features to those of the test sample.

Feature Importance and Selection: We introduce a

method for feature importance determination and this is

then used for feature selection.

Interpretability: We demonstrate how the proposed

model can be used to explain the basis of the prediction.
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This information can then be used to inform the customer

of the reasons for the offered premium price.

3 Problem formulation and assumptions

We formulate a model for this problem and then develop an

algorithm for its solution. Our objective is as follows: Given

policy information for a new or renewal automobile policy

(i.e., information about the drivers, cars, etc.), predict the

expected total amount in claims that will have to be paid

out to this customer over the subsequent year of the policy.

This prediction will be based on several factors, but corre-

lates with the risk associated with the drivers and cars on the

policy. This information can then be used to determine an

appropriate premium for the policy. Traditionally this com-

putation is performed using risk tables but independent of

the specific historical data of the company’s customers. Here

we use historical data of the provider’s customers to make

the prediction. This is more appropriate since the parameters

used in the risk tables may have been developed based on a

different customer base (country) and so unsuitable for the

one under consideration.

3.1 New versus renewal policies

Note that we need to distinguish between a new policy,

for which only customer provided data is available, and

renewals, for which information about the customer since

the start of their policy is available. We develop a model

that can be applied to both new and renewal policies. In the

case of renewal policies, the historical data of the policy are

included in the training set. The proposed approach there-

fore automatically includes the past claim information of the

policy (since it is now included in the training set). There-

fore, we assume that all policies that are at least 1 year old are

included in the training set used for parameter determination.

In this way, recent information is included in the predictions.

Note that this means there is no need for an accident penalty

or a no-claim discount since these adjustments are implicit.

3.2 Quantity versus currency of data

The more the data that are used for predictions, the more accu-

rate the prediction. However, as we increase the dataset by

going further back in time we will be using outdated infor-

mation (e.g., automobile models, cost of repairs, etc.). We

manage this as follows. As the cost of claims increases (with

time), the claim rate of a policy will also increase. The pre-

diction we get from using outdated information will therefore

be lower than what would actually occur. We therefore scale

predictions as follows. We predict the total claims for the

previous year, and we then use a scaling factor to ensure that

the total predicted claims equals the total actual claims. This

scaling factor is then included when making new predictions.

This scale factor computation is repeated every year so that

the total predicted claims for the upcoming year will be close

to the actual total claims for the year.

3.3 Comprehensive versus Third-Party policies

There are two types of policies, Comprehensive, in which

the company has to pay for repairs to the customer’s car even

if they were at fault, and Third-Party, in which the company

only pays for repairs to the other involved party in the acci-

dent (i.e., the third party). Note that the risk behavior (and

claims requests) of Third-Party versus Comprehensive pol-

icy customers may be different, but the approach we use has

the ability to extract the relevant information. We therefore

make predictions using the combined dataset (i.e., policies

of both types), but include the type of policy as a feature.

However, we sometimes separate the two cases (i.e., assume

an infinite distance between Comprehensive and Third-Party

samples) to better illustrate a point. Note that the features for

both types of policies are the same except that, for Compre-

hensive policies, there is also the Sum Insured (based on the

value of car) feature. This value is set to zero for Third-Party

policies, but the same model can be used for both policy

types.

3.4 Multi-car versus single-car policies

For each policy, we must predict the total annual claims for

the policy which may have multiple drivers and/or cars. Note

that a premium is charged per car and the sum of these forms

the policy premium. Our model uses the primary car and

primary driver of that car as the sample for that policy (and

ignores all other drivers/cars). This means that the prediction

is made for a single driver/car pair and this can be repeated

for each car on the policy to determine the total claim rate

for the policy.

4 Dataset description and preparation

The policy data used for this study span a period of 5 years

(2016–2020) and were provided by an insurance company

in Trinidad. There were a total of 67,124 policy samples

available over this period. Some samples were invalid (e.g.,

negative claim values) or were incomplete, and after these

were removed, we were left with 56,152 samples (i.e, 83.6%

of the provided samples). No confidential information is dis-

closed, and all monetary values are normalized. It consists of

data collected from past and existing customers. Each pol-

icy record consists of policy information, information for

each driver on the policy, information for each vehicle on

123



International Journal of Data Science and Analytics

the policy and information on each claim made on the policy

since its inception. Some of this information is not relevant

for our purposes (e.g., Vehicle Identification Number) and is

ignored. Certain features must be derived from the informa-

tion provided. For example, the policy lifetime is computed

as the difference between the termination date and start date

(if terminated) or the difference between the present date

and the start date (if currently active). Note that the metric

of concern is the average claim rate for a driver/car pair. For

each policy, we determine the total value of all claims made

(by the primary driver) and divide by the total lifetime of the

policy (in years) to obtain the claim rate.

Our objective is to predict the claim rate and use this claim

rate to determine a suitable price. In order to do this, we focus

only on the primary driver and their associated car for each

policy. This happens to be the majority of cases so we do not

lose too much information. For this driver, we compute the

claim rate based on accidents in which they were involved.

We remove features that were mostly empty or corrupt and

also placed filters to remove anomalous data. The features

that were finally used for the problem are provided in Table 1.

POL is the policy number which is used as a unique identifier

for the policy. CLR is the average claims per year computed

for the primary driver and their associated car for the policy.

TOC is the type of policy (customer) which we also use as a

feature. SIV is the sum insured value of the primary vehicle

of the policy and this value is zero for Third-Party policies.

All other features are described in the table.

5 Proposedmodel

The model we propose is unique in that (a) the metric of con-

cern is claims rate and (b) we use a novel solution approach

rather than the traditional approaches. We do not present a

full comparison with other machine learning approaches in

this paper since our intent is to introduce the model. Future

papers will include detailed comparisons with state-of-the-

art machine learning algorithms.

5.1 Definition of distancemetric

In this section, we describe the approach used for predicting

the annual financial claims per year (henceforth called claim

rate) for a given policy. We denote the set of features that we

consider by the set F. Features include information such as

age and gender, as well as information about their associated

vehicle such as model and body type. We denote the set of

samples by S where a sample is a policy and includes features

for the associated driver/car pair. One way to predict the claim

rate is to find the expected value of the claim rates of all

existing policies with identical features. However, there may

be none or very few of such policies. We must therefore

include policies with features that are nearby and include

them in the average.

In order to find “close” policies, we need to define a

distance metric between pairs of categories of a given fea-

ture and then use some measure (e.g., Euclidean distance)

to define the distance between two policies. We define this

distance as follows. For each category v of feature f , let

C( f , v) denote the claim rate averaged over all policies

that has a value v for feature f . For example, for the fea-

ture gender ( f = gender ) with members m and f , let

C(gender , male) denote the average claim rate over all male

drivers and let C(gender , f emale) denote the average claim

rate over all female drivers. We define the distance between

these two categories of this feature by |C(gender , male) −

C(gender , f emale)|. In general, if we had several feature

categories then the distance between any two of them will

be computed in this manner. Therefore, if the test policy has

a male driver then their gender distance from another policy

with a male driver is 0 while for a female driver it would

be |C(gender , male)−C(gender , f emale)|. Note that the

same computation is done for numerical features such as age.

For example, the distance between a 48-year-old and a 30-

year-old is given by |C(age, 48) − C(age, 30)|. By doing

this, we maintain the same measurement unit (claim rate) for

all distances. If the 48-year-old is a male and the 30-year-

old is a female, then the Euclidean distance is used (i.e., the

root of the sum of the squares of the gender and age feature

distances).

5.2 Claim rate prediction

If there were several existing policies with the exact feature

values as the test policy, then one could obtain a good esti-

mate on the claim rate for the test policy by taking the average

of claim rates over all policies with the same features. How-

ever, in general there may not be sufficient samples (or none)

to obtain an estimate with sufficient confidence, and so, we

need to include nearby samples as well. The more the nearby

samples we use, the more robust the estimate but the less per-

sonalized since included samples are further away. This in

turn leads to lower prediction accuracy. We take a weighted

average of claims of all policies where the weight is inversely

proportional to the Euclidean distance between the policies.

Note that other distance metrics can be used. For example, we

tried the Manhattan distance metric (instead of Euclidean)

since we thought computations would be faster. However,

both performance results and computation run times were

similar, so we decided to use the more common Euclidean

distance metric.

Suppose we wish to predict the claim rate for some test

policy and denote the distance between this policy and some

training policy s by ds . We use a weight (1 + ds)
−κ for

κ ≥ 0 when taking into account the claim rate of sample
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Table 1 Policy features used for

analysis Feature Description

POL Policy identification number

CLR Annual claim rate (total claims divided by policy lifetime)

ADR City of home address

COV Were drivers continuously insured over the last 5 years? (y/n)

SEX Gender of driver

AGE Age of driver

MST Marital status of driver

USE Type of use (business, work or pleasure)

WRK Whether car is used for work (y/n)

NAF The number of at-fault accidents over the last 5 years

DAF Number of years primary driver has been free of Claims

NNF The number of not-at-fault accidents over last 5 years of driver

MAK Car manufacturer

VYR Model year

BDY Body type

YCF The number of years the primary car has been claim free

NCC Engine size of car (in CC)

TOC Type of policy (Comprehensive or Third-Party)

SIV Sum insured value

s ∈ S. However, we need to have a normalizing factor α. The

predicted claim rate c for the test sample is therefore given

by

c(κ) ≡
∑

s∈S

α
cs

(1 + ds)κ
(1)

where cs is the claim rate of policy s. If all policies had the

same claim rate, then the predicted claim rate should also

have this value, and hence, we must have

c ≡
∑

s∈S

α
c

(1 + ds)κ
(2)

and hence

α =

(

∑

s∈S

1

(1 + ds)κ

)−1

(3)

and so we have the predicted claim rate for the test policy as

c(κ) ≡

∑

s∈S
cs

(1+ds )κ
∑

s∈S
1

(1+ds )κ

(4)

The pseudo-code for this computation is provided in Algo-

rithm 1.

5.3 Computing the optimal value of �

Next we determine the optimal value of κ . For an existing

policy s, we have the actual claim rate cs . Note that we can

predict a claim rate for this sample (in which case the sample

must be removed from the training set) and we denote this

predicted value by ĉ(κ). We introduce the hat to distinguish

this predicted value with the actual value (which has no hat).

Note that we use fivefold cross-validation, and hence, 80%

of the samples are used for training (computing the average

claim rates C( f , v)) while the other 20% are used for test-

ing (and determination of the accuracy). We also tried using

tenfold cross-validation and obtained similar performance

results but at the cost of greater computational run time so

used fivefold for the entire study. Note that when κ = 0 then

ĉ(κ) = c̄, and so, the prediction is simply the average over

all (training) samples. As κ is increased, close samples are

weighted more heavily but the average becomes less robust,

and hence, the error will eventually start increasing again.

Therefore, the optimal κ lies somewhere in between (see

Fig. 4 for an example of this relationship). We therefore will

find κ that minimizes the mean absolute error (MAE) of the
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Algorithm 1 Pseudo-code for proposed Algorithm to predict

test sample claim rate c(κ)

1: F ≡ set of features

2: S ≡ set of training samples

3: v f ≡ set of categories for feature f ∈ F

4: κ > 0 tuning parameter

5: Xs f ∈ v f ≡ category of feature f ∈ F of training

sample s ∈ S

6: x f ∈ v f ≡ category of feature f ∈ F for test sample

7: cs ≡ claim rate for sample s ∈ S

8: c(κ) ≡ predicted claim rate for test sample using

parameter κ

9: c̄ ←
1

|S|

∑

s∈S

cs (average claim rate over all training

samples)

10: for each f ∈ F do

11: for each v ∈ v f do

12: z ≡ {s ∈ S | Xs f = v}

13: C( f , v) ←
1

|z|

∑

s∈z

cs (average over samples

where f has value v)

14: end for

15: end for

16: for each s ∈ S do

17: ds ←

⎛

⎝

∑

f ∈F

(

C( f , x f ) − C( f , Xs f )
)2

⎞

⎠

1
2

18: ds ← ds

c̄

19: end for

20: c(κ) =

∑

s∈S
cs

(1+ds)κ
∑

s∈S
1

(1+ds)κ

(predicted claim rate for test policy)

prediction. For convenience, we will normalize this by the

MAE if one used the average claim rate over all policies,

c̄, as the predictor. One can think of this case as making a

prediction without features. Therefore, we will compare the

error of the prediction made with features with the error of

the prediction made without features. Let us denote the test

set by T, then we compute the normalized error over the test

samples as

E(κ) =

∑

t∈T |ĉt (κ) − ct |
∑

t∈T |c̄ − ct |
(5)

If the predictor is the same as averaging over all policies (i.e.,

ĉt (κ) = c̄), then this ratio is 1. However, if, by adding fea-

Fig. 1 E(κ) of two features to demonstrate relative importance

tures, the MAE of the predictor is decreased then this ratio

drops below 1. Therefore, this metric provides an indication

of prediction performance using features when compared

to prediction performance without using features and hence

demonstrates the benefit of the feature-based approach. We

then find the κ value that optimizes the predictor as

κ∗ = argmin
κ

E(κ) (6)

This value is then used to obtain the optimal prediction as

c∗
t = ĉt (κ

∗).

5.4 Feature importance

Consider a single feature. We know from the previous sec-

tion that as κ is increased then E(κ) should initially decrease

before increasing once again. If this does not occur, then the

feature does not capture sufficient information to be useful

for predictions. One can therefore use the value of E(κ) eval-

uated at the optimal κ for that feature alone as an indication

of importance. In fact, even if we used a fixed value of κ

for each feature the corresponding value of E(κ) is an indi-

cation of relative importance with lower values indicating

more importance. For example, in Fig. 1 we plot E(κ) as a

function of κ for two features DAF (years claim free for the

driver) and YCF (years claim free for the car). For DAF, the

minimum error occurs at κ = 8 while for YCF it occurs at

κ > 20. However, at κ = 10 we find that the respective val-

ues provide a good representation of the optimal value and

hence can be used to compare the two features. Also note

that here we clearly see that risk depends primarily on the

driver with the car playing a minor role.

We therefore use this approach to determine which fea-

tures are important and hence should be included in the

analysis. We use a value of κ = 10, and using a single fea-

ture at a time, we compute E(10). The resulting values are

provided in Fig. 2. The features represented in red have nor-

malized errors greater than 1.
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Fig. 2 Normalized MAE for

proposed predictor computed

for each feature
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Fig. 3 Histogram of claim rate

versus age for original (blue)

and filtered (red) cases

5.5 Feature selection

Now that we know which features are important, we focus on

which of them should be included in the model. We do this

as follows. Starting from the most important feature (lowest

value for E(10)), we add one feature at a time and again com-

pute E(10) for the combination. If the performance metric

decreases (i.e., better results), then we keep it and repeat.

If the performance metric increases, then we remove the

recently added feature and repeat. Note that some features

may have low importance when considered in isolation, but

together with other features (such as type of policy) their

value increases. The results of this process are provided in

the lower part of Fig. 2. A brown bar indicates that the addi-

tion of a feature resulted in a loss of performance, and hence,

the feature should be removed.

The final features to be used include number of years since

the driver was last in an accident, the number of at-fault

accidents by the driver over the last 5 years and the number

of not-at-fault accidents over the last 5 years. Each of these is

a strong indicator of risk. In the case of renewals, we would

have actual claim rate values, but for new customers these

three features (even without financial information) correlate

well with claim rate. The type of policy feature is also needed

since it helps to distinguish the two types of policies. Note

that we could do the analysis separately for each type of

policy, but the increase in sample size by combining the two

types provides better overall results. Only one car feature was

found to be sufficiently beneficial and that was the number of

years since the last claim was made on the car. However, this

feature is far less important than the driver features that were

included, indicating that what really matters is the driver on

the policy and not the car. Whether the driver was continually

insured over the last 5 years (i.e., mature driver), the type of

use (personal versus business) as well as the gender of the

driver were also found to be useful (but far less so than the

others).

Note that we had expected certain features (like age) to

be beneficial, but they were not. In Fig. 3, we provide a his-

togram of the average claim rate by age (in blue). We see

that there is a weak dependency on age, but because of the

large variations from year to year (because of limited data),

the dependency is not sufficiently robust. Next we predicted

the claim rate for each age using the approach described pre-

viously. We found that the optimal value of κ was 2 with

a normalized MAE of E(2) = 0.9996 which indicates that

limited personalization was possible. We then used this value

to find optimal claim rate values for each age. In Fig. 3, we

provide the histogram of the original claim rates (blue) and

the filtered claim rates (red). We note that the red claim rates

are each close to unity and hence provide little differentia-

tion. This is why this feature does not provide much benefit

for predictions.

5.6 Parameter optimization

We now have the set of features to be included in the model.

Next we find the optimal value of κ for this combination of

features. This value will then be used for making predictions.

In Fig. 4 (brown curve), we plot E(κ) as a function of κ . We

find the optimal value to be κ∗ = 8 with E(8) = 0.63, and

hence, one can reduce the MAE obtained with no features

by 37% by using the 8 chosen features. We also note that,

although E increases with κ beyond the optimal point, the

increase is very gradual, so the error remains nearly constant

for a wide range of values, and so, the approach is robust

with respect to κ .
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Fig. 4 E(κ) as a function of κ for selected features

We believe that if we had performed feature selection

using each policy type separately that we would get the same

features. We therefore used these features and determined

E(κ) for Third-Party policies only and also for Comprehen-

sive policies only. These are also plotted in Fig. 4. We find

that the accuracy for Third-Party only samples is close to

that of the case of using both Third-Party and Comprehen-

sive samples. This is primarily due to the fact that there are

50% more Third-Party samples than Comprehensive sam-

ples. Therefore, the Third-Party samples are more useful to

the Comprehensive predictions than the other way around.

Also note that all three cases are optimal at κ = 8.

6 Illustrative examples of predictions

We have now determined the features to be used and the opti-

mal value of κ . In this section, we will consider various policy

scenarios and predict the resulting claim rate to demonstrate

the dependence on the features. Although we use both Com-

prehensive and Third-Party policies in our model, we will

illustrate using a Comprehensive policy and normalize claim

rates with respect to the average over all Comprehensive Poli-

cies. In Table 2, we provide various scenarios to illustrate that

the model provide reasonable outputs. The top table starts

with a low-risk policy and features are changed one at a time

that results in increased claim rates. The bottom table starts

with a high-risk policy and features are adjusted one at a time

in order to lower the claim rate.

There is one outstanding case that provided unexpected

results. In the lower table, when we reduce the number of

not-at-fault accidents from 1 to zero we expect a decrease

in the claim rate, but instead we found that it increased. We

investigated this in detail. We found that the provided data

has some inconsistencies. There were many cases where the

number of not-at-fault accidents and at-fault accidents were

0, but the driver indicated that they made a claim within the

last 5 years. This of course is inconsistent. This lead to a lot of

claims listed under NNF = 0 when they should be listed under

NNF = 1 or above. We believe this to be the reason for the

result obtained. Our intent was not to make any adjustments

to the given data for this paper to avoid any appearance of data

tweaking. However, in the future, we will investigate what

happens when we adjust the data to make it more consistent

while justifying any changes made.

7 Interpreting prediction

The ability to determine the features that played a domi-

nant role in the prediction of risk of a customer is important.

Since pricing depends on this risk, then one should be able to

explain to a new customer what factors played a role in the

determination of their policy premium. This is often difficult

for certain machine learning algorithms although there are

proposed ways to address this issue [16]. In this section, we

provide an approach for interpreting results using the model

that was used for predicting risk. In future work, we will com-

pare with the approach specified in [16] which uses Shapely

values.

Once a predicted claim rate is computed, then this infor-

mation can be used to compute a premium. The premium

will take into account the operational costs of the company

as well as the desired profit margin. This is another interest-

ing area of research, but is outside the scope of this paper.

Once a premium is computed, it is important to explain the

reason for the amount (i.e, interpretability). The operational

cost and profit are independent of the customer so the only

customer-dependent factor is the predicted claim rate. We

can determine the influence of each feature on this claim

rate and this information can be used to explain the deci-

sion made. We do this as follows. Consider any feature f

and let v represent the category value of this feature for the

new policy. We can use the model, with only feature f , to

determine the predicted claim rate for anyone in category

v. Let us denote this predicted claim rate of this feature

by C̃( f , v). Note that this is not the same as the average

claim rate over all training samples with category value v

which we previously denoted by C( f , v). Let us explain

with the feature gender. If κ = 0 then C̃(gender,male) =

C̃(gender, female) = c̄. However, as κ goes to infin-

ity then C̃(gender,male) approaches C(gender,male)

and C̃(gender, female) approaches C(gender, female). For

positive values of κ , C̃( f , v) will lie between c̄ and C( f , v).

The metric I f ≡ C̃( f , v)/c̄ will be used to represent the

impact of feature f (of a policy with value v for the feature)

where c̄ is the average claim rate. For this exercise we only

use Third-Party samples to better explain the approach. If

I f < 1 then the feature is causing a reduction of the claim

rate otherwise it is causing an increase in the claim rate.

Note that all values are being computed using κ = κ∗ and

normalized with respect to the average claim rate for Third-

Party policies.
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Table 2 Predictions for sample cases starting with low-risk case (top) and high-risk case (bottom)

DAF NAF NNF TOC YCF COV USE SEX Claim rate

15 0 0 CM 15 Y Business M 0.07

6 0 0 CM 15 Y Business M 0.63

2 1 0 CM 15 Y Business M 0.93

15 0 1 CM 15 Y Business M 0.68

15 0 0 TP 15 Y Business M 0.03

15 0 0 CM 0 Y Business M 0.20

15 0 0 CM 15 N Business M 0.07

15 0 0 CM 15 Y Private M 0.06

15 0 0 CM 15 Y Business F 0.07

1 1 1 CM 1 N Private F 6.04

5 1 1 CM 1 N Private F 1.53

6 0 1 CM 1 N Private F 0.56

1 1 0 CM 1 N Private F 7.59

1 1 1 TP 1 N Private F 4.04

1 1 1 CM 15 N Private F 5.55

1 1 1 CM 1 Y Private F 5.97

1 1 1 CM 1 N Business F 6.00

1 1 1 CM 1 N Private M 6.04

For the policy we chose, we have the following informa-

tion. The driver got into an accident and made a claim 9 years

ago (ID AF > 1). They have no at-fault accidents over the last

5 years (IN AF < 1). They have had 1 not-at-fault accidents

over the last 5 years (IN N F > 1). They have a Third-Party

Policy (hence IT OC = 1). Their car was last in an accident 18

years ago (IY C F < 1). They have been continuously insured

over the last 5 years (IC OV < 1). This is their private vehicle

(IU SE < 1). The driver is Male (ISE X < 1 but almost 1).

The predicted claim rate (which was impacted by the various

features) has IC L R = 1.0. We provide this information visu-

ally in Fig. 5. Hence, the provider can explain to the customer

the specific reasons for the premium of their policy.

8 Some analytical results

8.1 Expected value of prediction

Consider the predicted claim rate ĉ for some test sample. If

we assume that the training samples have an average claim

rate c̄, then we will show that the expected value of ĉ is c̄. This

would mean that the sum of predicted claim rates approaches

the sum of the actual claim rates as the number of test samples

increases. This ensures that, at the end of the year, the total

Fig. 5 Contribution of each feature to prediction

claims that are predicted is close to the total actual claims

that were made.

Lemma 1 If the training samples have a mean claim rate of

c̄, then the expected value of the prediction for a test sample

is equal to c̄.

Proof Recall that the predicted value for a given κ is given

by

ĉ(κ) =

∑

s∈S
cs

(1+ds )κ
∑

s∈S
1

(1+ds )κ
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We need to take the expectation of the right-hand side. Now

note that the feature values for a particular set of training

samples are fixed and only the claim rate varies. Also note

that the feature values of the test sample is also fixed. This

means that ds (for sample s) is fixed given the specific test

and training samples, and so, the denominator is constant,

and hence, we have

E[ĉ(κ)] =

∑

s∈S
E[cs ]

(1+ds )κ
∑

s∈S
1

(1+ds )κ

Using the fact that E[cs] = c̄, we obtain E[ĉ(κ)] = c̄. ⊓⊔

8.2 Limiting values of c(�)

We have seen that ĉ(κ = 0) = c̄. In this section, we compute

the limit of ĉ(κ) as κ tends to ∞. We then take the expected

value of this limit.

Lemma 2 If the training samples have a mean claim rate of

c̄, then

E[ lim
κ→∞

c(κ)] = c̄ (7)

Proof We first compute the limit of the predicted value, ĉ(κ)

as κ tends to infinity. There are two cases to consider. If

one or more training samples have identical feature values

as the test sample (i.e., ds = 0), then ĉs is the average of

these values. However, if none of the training samples have

identical features then both the numerator and denominator

of ĉ(κ) tend to zero as κ tends to infinity, so we instead do

the following. Denote the training sample with the small-

est distance from the test sample by s′. Let us multiply

top and bottom of the equation for ĉ(κ) by (1 + ds′)κ to

obtain

lim
κ→∞

c(κ) = lim
κ→∞

cs′ +
∑

s∈S|s �=s′ cs

(

1+ds′

1+ds

)κ

1 +
∑

s∈S|s �=s′

(

1+ds′

1+ds

)κ (8)

Now note that since ds′ < ds for all samples s, then, as κ

goes to infinity, the summations go to zero, and hence,

lim
κ→∞

ĉ(κ) = cs′ (9)

If multiple samples are at this distance ds′ , then the numerator

constant would be the sum of these samples and the denom-

inator would be the number of them, and hence, the limit is

the average of the claim rates of these samples. Since cs′ is

a sample from the training set space, then its expected value

is c̄, and hence,

E[ lim
κ→∞

ĉ(κ)] = c̄ (10)

⊓⊔

One should note the following. As the number of training

samples increases, more training samples will be available

close to the test sample, and hence, the optimal value of κ

will increase. In the limit, the predicted value becomes the

true mean for the features of the test sample, thus achieving

precise personalization.

9 Conclusions and future work

We presented a new model for automobile insurance risk

assessment and demonstrated its effectiveness using real

data. We showed how feature importance can be computed,

how features can be selected and how model parameters

are optimized. Finally we demonstrated how the model can

be used in practice and results interpreted. Note that this

approach can be applied to any regression problem and its

performance will improve as the variance of the target metric

decreases.

There are two differences with prior work: the metric

considered (claim rate) and the regression approach used.

We plan to isolate the contributions of each of these. We

plan to use traditional machine learning techniques with the

“claim rate” metric and demonstrate the improvement. We

also plan to compare our proposed regression approach with

the many machine learning algorithms over a wide range of

datasets. One of the problems with the proposed approach

is the computation resources required to optimize over κ .

We are investigating ways to speed this up mathematically

(e.g., a smarter search over κ) and computationally (i.e.,

through parallel computations). We also plan to investi-

gate how recursive improvements of distance values can be

used to increase accuracy (see [11] for an example of this

improvement). Finally we plan to investigate properties of

the regression model such as whether E(κ) is convex when

its gradient at κ = 0 is negative.
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