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Abstract. Small Island Developing States (SIDS) are particularly susceptible to
the detrimental effects of Climate Change. Issues such as food security have been
given increased attention over the last few years and this has sped up with the
transportation and logistical issues faced during the COVID pandemic. Farmers
must now increase yield to increase food security while battling the effects of
climate change. Technologies such as Artificial Intelligence can assist but the data
needed to train these algorithms are not available for SIDS and so development in
these areas are limited. We received a National Geographic Grant to investigate
the application of Artificial Intelligence to Precision Agriculture in SIDS and one
of the required steps was the collection of data for training Machine Learning
algorithms. This required collection of data (using Unmanned Aerial Vehicles or
Drones), processing of the data, labelling of the data and then development of
suitable algorithms for problems such as Weed Detection, Water Stress detection
and other potential problems. We are making this dataset available to the public
on an Open Data platform that we developed and which is located at data.tt. This
paper describes the data that is being shared, how it can be accessed and examples
of how it can be used.
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1 Introduction

The effects of Climate Change on Small Island Developing States (SIDS) are well
documented. In addition, food security issues, not only due to Climate Change but
also because of transportation and logistics issues, have surfaced because of the Covid
pandemic. These issues, for the case of Caribbean SIDS have been documented in
publications such as [1].

New technologies, such as Artificial Intelligence (AI) and Robotics, are being used in
developed countries to increase crop yield. Unfortunately, the use of these technologies
in SIDS is rare. One issue is the lack of data. Artificial Intelligence algorithms require
data on which to train and this data must be taken from the same environment in which
the algorithm is being applied. Unfortunately, such data is not readily available in many
SIDS.

© The Author(s) 2023
J. Sumantyo et al. (Eds.): ICoSIA 2022, ABSR 29, pp. 24–34, 2023.
https://doi.org/10.2991/978-94-6463-122-7_3

http://crossmark.crossref.org/dialog/?doi=10.2991/978-94-6463-122-7_3&domain=pdf
https://doi.org/10.2991/978-94-6463-122-7_3


An Open Dataset of Labelled Tropical Crops 25

One component of a National Geographic Society Grant that we received was the
application of AI to Precision Agriculture for SIDS environments. SIDS have certain
limitations such as small farm sizes which limits scaling advantages. Hence, such farmers
cannot afford to purchase and use devices such as Unmanned Aerial Vehicles (UAVs).
In order to develop AI algorithms for use in SIDS we have collected, processed, labelled
and used local agriculture data. We are making this data available to the public using
an Open Data repository that we previously developed using the CKAN platform. We
describe how this data was collected, how it was labelled and how it can be accessed on
this platform which is located at data.tt.

2 Related Work

There have been numerous crop datasets over the years. Toda et. al spoke of using
synthetic datasets of barley seeds for training an instance segmentation neural network,
namely the Mask R-CNN [2]. These synthetic datasets were created by using a variant of
the sim2real approach, which generates synthetic images, with domain randomization,
and uses variations of the synthetic images to train the deep neural network [2]. The
authors achieved an Average Precision value of .96 on the synthetic dataset and .95 on
the real-world dataset [2]. However, at a higher IoU (Intersection over Union) threshold,
the Average Precision was .73 on the synthetic dataset and .59 on the real-world dataset
[2]. The authors stated that the higher values on the synthetic dataset may be a result
of data leak, which occurs when the same images are used in training and testing, but
it may also be a result of over-fitting [2]. Additionally, the differences in the synthetic
and real-world test dataset are brought to light when the threshold is increased, which
suggests that the synthetic dataset is not an accurate representation of the barley seed
images.

Jolivot et al. introduced a database consisting of 24 datasets of satellite images of
agricultural plots of land [3]. These datasets consist of a variety of crops, ranging from
maize, rice, sugarcane, and soybeans. The data was collected over a period of seven years
and from seven collection sites located across the world. However, the authors did not
apply any machine or deep learning techniques to the data collected. Nevertheless, they
made their data publicly available thereby allowing other researchers to apply machine
learning techniques to the data.

Paliyam et al. spoke of using Street2Sat, which is a method for generating labelled
datasets from geo-tagged images [4]. The proposed method collects images of road-side
objects at regular intervals and then transforms them into a set of geo-labelled points
with locations. These points can then be used as labels for satellite images. The authors
then used YOLOv5 to make predictions on their dataset. The labelled dataset consisted
of 296 images of maize and sugarcane. The resultant dataset consisted of 755 bounding
boxes of maize and 1795 instances of sugarcane in the training set and 253 instances of
maize and 229 instances of sugarcane in the test dataset. The authors achieved a precision
of 0.41, and a recall of 0.59, which is poor. The authors stated that it was difficult to draw
a bounding box around individual plants in a crop field. This means that labels included
many plants and did not cover every crop instance in the image. Moreover, the images
collected were mainly from Western Kenya, which means that the models developed
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may perform poorly on images that were collected from other countries due to the lack
of variability in the dataset.

Zheng et al. introduced a new dataset called CropDeep which consists of 31,147
images of 31 categories of crops such as tomatoes, turnips, pumpkins, scallions and
lemons [5]. This dataset was created using IoT cameras, robots, mobile cameras and
smartphones. The authors obtained 49,765 bounding boxes from the dataset. Then, the
authors compared the performance of image classification and object detection models
on the CropDeep dataset, using networks such as VGG16, VGG19, ResNet, Faster R-
CNN, YOLOv3 and RFB. For the image classification models, the average accuracy
of all models used was over 0.92, which is excellent. For the object detection models,
the average Mean Average Precision of all models used was over 0.82, which is good.
However, the authors did not state the precision, recall or F1 score of the classification
models. It is recommended that more than one evaluation metric be used to evaluate
the performance of deep learning models to obtain a better idea of their performance.
Additionally, the CropDeep dataset suffered from class imbalance, with the lemon class
having fewer samples than other classes. This negatively affected the performance of
the models on that class.

Mylonas et al. introduced a database called Eden Library, which consists of images
of 15 different crops, 9 weeds and 30 disorders which include pests, diseases and nutri-
ent deficiencies [6]. This database consisted of both proximal and images from an UAV,
facilitates image classification and object detection and had an accompanying web appli-
cation made with the MEAN stack (MongoDB, Express.js, Angular and Node.js). How-
ever, this dataset also suffered from class imbalance and the authors did not perform any
image classification or object detection tasks on the data.

Pena et al. spoke of utilizing semantic segmentation on a dataset consisting of ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite images
of an agricultural region in California [7]. The satellite images captured nine different
crops including walnut, almond, alfalfa, tomato, rice, sunflower, safflower and maize.
The authors compared the performance of a C4.5 decision tree, a logistic regression
model, a support vector machine model and a multi-layer perceptron on the dataset.
The authors achieved an accuracy of 0.88 on the multi-layer perceptron and the support
vector machine models, an accuracy of 0.86 on the logistic regression model and an
accuracy of 0.79 on the C4.5 decision tree model, which, overall, is good. However, the
satellite images were captured in 2006 which suggests that the models’ performance
may falter when tested on satellite images captured in more recent years.

Veeragandham and Santhi introduced a new balanced and multi-class dataset for
groundnut crops with 15 different classes of weeds and 24,816 images, known as the
groundnut weed dataset [8]. The authors then performed image classification on the
dataset by comparing the performance of AlexNet, VGG-16, VGG-19 ResNet-50 and
ResNet-101 on the groundnut weed dataset and the existing corn weed dataset. The
authors achieved an accuracy of 0.998 and 1 on the groundnut weed dataset and corn
weed dataset with the ResNet-50 and RestNet-101 networks. However, the authors did
not report the precision, recall and F1 score of the models. It is recommended that more
than one evaluation metric be used to evaluate the performance of deep learning models
to obtain a better idea of their performance.
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The main contribution of this paper is the description of a large agriculture dataset
that is being made available to the public as open data. This dataset took a significant
amount of time to create and we hope that others can benefit from our efforts. We plan
to continue expanding this dataset as our research progresses.

3 Data Collection and Processing

Data collection began in October 2021 and finished in April 2022. The data collection
is aimed at solving the problems of identifying water stress and weed detection. The
methodology of both experiments are outlined below. The farm locations that were
chosen were spread over the particular SIDS, the island Trinidad in the Caribbean.
These locations are provided in Fig. 1.

For the weed detection, small scale vegetable farmers were contacted for data col-
lection through a local NGO. They were contacted through phone calls and the project
was explained to determine the farmer’s willingness to participate. The video data of the
Capsicum annum mono-cropped field was collected through the use of a DJI Phantom
V4 Pro drone. The video data was then split by frames and examined for artefacts and
blurriness. This unmanned aerial vehicle was used through the manual flight application
DJI pro. It takes images at approximately 3 m off the ground at a speed of 2 m/s. Once
video is collected, the frames are then extracted at an interval of 30 frames per second
at each data collection site. The data was collected between the hours of 10 am to 12 pm
to allow for optimal lighting. Factors like rain and cross wind influenced the uptake of
data.

The extracted images are then filtered for duplicates, blurred images and redundant
data. The images are scanned and filtered for any inappropriate objects or reflective
surfaces.

Fig. 1. Farm locations on the chosen SIDS
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Agricultural experts were consulted when designing the water-stress experiment.
For this experiment we manipulated the irrigation system at the farm. Additionally, to
attain an array of images at different levels of water stress it was suggested that the
experiment should be done on a slope so that there would be a gradient of soil water
saturation going down a slope which would aide in the robustness of models created.
This is an important factor considering the open field in which data was collected has
practical implementations for farmers.

For this study we used random sampling for data collection of soil moisture content.
The fields were maintained daily by the farming personnel on site. The site was mon-
itored for pests, nutritional deficiencies and invasive weeds. One third of the field was
excessively irrigated through flexible irrigation at the roots of the plant. Research sug-
gested that the ideal amount of irrigation during the wet season is approximately 1.054
L and 3.73 L during the dry season. One third of the field was not watered as a control
and the remaining one-third was watered moderately. The data and adjusted watering
ranges were done during the Week 4 and Week 5 stages of development. Samples were
collected once during the wet season and again during the dry season using an RGB
camera.

On average a single data collection venture yielded approximately thirty to fifty
images this was due to cross winds yielding blurry images and artefacts on site. Image
augmentation code was used to determine the similarity between images, and to resize
the images to crop out artefacts. This became necessary due to strong winds and poor
lighting (due to weather) at the data collection site. Overall, the number of images
collected was greater than the data labelled. This was due to time constraints placed on
the project. We collected 200 water stress images and 300 images for weed detection.

Weather was a significant factor in data collection. In future iterations of this project,
it is proposed that the impact of weather and flooding in small islands as it affects
farmers in terms of water-stress should be examined. As such, farmers who experience the
devastating effects of flooding and crop destruction would be targeted for data collection
efforts in the future.

4 Data Labelling and Sample Usage

The images were labelled using the Image Labelling application found in MATLAB.
Using either the super-pixel or assisted freehand tools found in the application, the
ground truth data was labelled. The images were marked using recognition of interest
(ROI) labels. The healthy crops present in the image were labelled as “crops” and the
weeds present in the image were labelled as “weeds”. The crop pixel data was encoded
as 0 in the array used to train the model. The weed pixel data was encoded as 1. Similarly,
the background pixel data was encoded as 2. The background pixel-data refers to the
pixel data of the image which was classified as neither crop nor weed. The crops were
labelled in purple and the weeds were labelled in yellow. This was done to ensure that
it was easily visible as the chosen colours were contrasting to the natural colours of the
crops and weeds respectively.

The process of image labelling required the person labelling to manually zoom into
the image at very high magnification rates. This was done to ensure accurate labelling
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Fig. 2. Example of an original image (top) and the labelled image (bottom)

as it was difficult to decipher between the weeds and crops without performing this step.
However, this resulted in the labelling process taking a lengthy time to complete. The
model required a large number of images for training and testing to ensure accuracy. 194
of the 200 water stress images were labelled and 180 of the 300 weed detection images
were labelled. Each image took approximately one hour to label hence the labelling
process was rather time consuming. One limitation was that since the labelling was
done manually using MATLAB, human error is likely since the crops and weeds were
labelled based on the discretion of the person labelling. Figure 2 contains an example of
an original image (top) and the corresponding labelled image (bottom).

The sample images were used to perform weed detection and water stress determi-
nation. After labelling was completed, image augmentation such as rotations, zooming,
flipping and the addition of filters were applied to increase the number of images in the
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data sets and to help create more robust models. The models were then trained using the
original and labelled images. The performance of the models was then evaluated. The
models displaying a high-performance rate were then saved and used in the creation of
the mobile and web applications. The farmers will then use the application of choice to
upload images of their crops, which are similar in nature to the original images which
were used in the labelling process. Upon being prompted by the application, the farmers
would then select either weed detection or water stress as the problem they would like
to address. Here, the saved model is loaded by the application and used to predict the
labels as either water-stressed or non-water-stressed for the water stress problem and
either weed or crop for the weed detection problem. These labels were then assigned
a red, green, blue (RGB) value and displayed to the user where it will be used for
comparison with the original image uploaded by the farmer.

5 Platform for Data Access

Using the images that were collected and labelled, four data sets were uploaded to the
repository data.tt. This is an online repository which we developed [9] and is powered
by an open source application, CKAN. This site provides open data to the general public
for personal or academic use. All data sets available on this site were collected from or
are directly related to Trinidad and Tobago. Collections of data sets are published under
Organizations and can also be viewed by tags, groups, file formats and licenses.

The links provided in this paper will allow the reader to easily navigate to the data
sets collected for the purposes of the Farming Adaptation and Artificial Intelligence for
Resilience (FAAIR) project. However, using our repository, the reader can also easily
navigate to the data. Figure 3 shows screenshots of the home page of the repository (top)
and the page obtained when one searches for the TTLAB organization (bottom).

The data sets for Weed Detection are labelled as “Unlabeled Weed Detection Images
for Hot Peppers” and “Labelled Weed Detection Images for Hot Peppers”. Similarly,
for the Bok Choy data sets. Each data set is accompanied by a short description which
tells the user about the species of the crop as well as the usefulness and the context of
using the data. On this page, there are two sections: “Data and Resources” as well as
“Additional Info”. The “Additional Information” section provides information such as
the last date that the data set was updated, the date of creation, the licence and other
important metadata. The user can navigate to the data sets by clicking the name of the
data set in the “Data and Resources” section and then clicking on the url provided at the
top of the resulting page.

Each url provided on the site will direct the user to a folder on a Google drive
containing the images for the selected data set. This folder can then be downloaded to
the user’s local machine. The user should note that the labelled images are given the
same name as their corresponding unlabelled versions in the original data set. A GitHub
link containing a step-by-step tutorial on displaying and utilising the pixel data from
the original images and the labels from the labelled images is provided to the user. The
images used in the tutorial will be available in the linked Github repository as well as the
link provided to the data sets. In the near future the user will be given the added option
to preview and use the images directly from the site.
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Fig. 3. Screenshots of Home page and TTLAB Organization page on data.tt

Detailed instructions on using images from both file paths and urls can be found in
the Jupyter notebook file in the Github repository [10]. Here we provide some things to
note:

• The tutorial is contained in a Jupyter Notebook file that is openly accessible on Github
[10] and uses python version 3.10. Other than Jupyter, this file can be used in PyCharm,
Visual Studio Code or any other editor that supports notebook files. If preferred,
notebook files (.ipynb) can also be converted to python files (.py).

• Downloaded images can be loaded into a python program by using the cv2 imread
function. This function requires the file path of the image on the user’s local machine.
In most cases, Windows requires the use of forward-facing slashes as opposed to back
facing slashes in the file path. If the user faces an invalid string error, the path can be
edited accordingly. The user should ensure that the unlabelled and labelled images
remain in separate folders and that their file paths are assigned to the appropriate file
path variables. The image file name variable should be an integer. The Label prefix at
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Fig. 4. Sample of images generated with Github code (original on top and labelled below)

the end of the labelled image file path is only applicable in the tutorial for purposes
of helping the user differentiate between the images. The file formats used in the data
sets (.png or.jpg) must be defined as a string variable. The user should ensure that the
file format used in the notebook aligns with that of the images in the required data set.

• The above method is modified when images are being read from a url. The code for
this method is included in the tutorial and can be used by following instructions to
replace certain commented blocks of code with others that are relevant to the above
method and currently not commented in the notebook. If the preferred method of
loading the file is with an image url, the user must ensure that the url leads to a web
page that only displays the desired image. The tutorial currently includes the urls to
two sample images from the Weed Detection data set.

• Since cv2 reads the image using the BGR (blue-green-red) pixel arrangement format,
the user can use the cv2 cvtColor function with the parameter which converts the
pixel arrangement format from BGR to RGB if this pixel arrangement better suits
their requirement. This step is not necessary when the image is loaded from the url.

• In order to access the image’s pixel data, the image object can be converted to a numpy
array using the numpy asarray function. This numpy array will contain each pixel’s
red, green and blue pixel values. If a file url was used to load the images, additional
steps are necessary to obtain the required numpy array. These are outlined in a similar
manner using commented code. To display the labelled image data, the user can utilise
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the numpy where function to replace each label with a pixel value. For the tutorial
the background, crop and weed labels were assigned the colours black, grey, white
respectively using the appropriate pixel values.

• The user can use the GridSpec library to view both the labelled and unlabelled images
side by side using the unlabelled image’s pixel array and the modified labelled image’s
pixel array. The GridSpec variable controls the layout of the display and can be altered
if desired. Figure 4 shows how the unlabelled and labelled images were displayed in
the tutorial using GridSpec.

• The unlabelled image (as a numpy array) can then be augmented as needed. The arrays
can be converted back into images using the pil fromarray function. The resulting
image objects can then be saved to the user’s local machine using the pil save function
while specifying the file path and the user’s desired image format.

• The Github step-by-step tutorial and sample images can be found at [10].

6 Conclusions

We described a dataset that was collected for research in the application of Artificial
Intelligence to Precision Agriculture in a SIDS. The dataset is being made available to
the public and this paper is meant to serve as a source of information on the dataset,
how it was collected, how it can be accessed and how it can be used. Any data that
is collected in the future for this project will also be added to the repository which is
located at data.tt.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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