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Abstract. Plankton play a critical role in aquatic ecosystems, con-
tributing to oxygen production, nutrient cycling, and the regulation of
global carbon dynamics. Effective monitoring of plankton populations is
essential for understanding environmental change and ecosystem health.
However, traditional plankton classification relies on manual image anno-
tation by taxonomic experts, a process that is labor-intensive and dif-
ficult to scale. These challenges are particularly acute in data-sparse
regions such as the Caribbean, where labeled datasets are scarce. This
study presents a plankton classification approach for a microscopy image
dataset collected from the coastal waters of Trinidad and Tobago by
the Department of Life Science at the University of the West Indies
(UWI). Due to the limited size of this regional dataset, transfer learn-
ing was applied using the National Data Science Bowl (NDSB) dataset,
which includes over 30,000 images across 121 plankton classes. Convolu-
tional neural networks (CNNs) using the NDSB data are fine-tuned to
adapt to the local Caribbean samples. The proposed method significantly
improves classification performance, especially in the context of limited
data and class imbalance. The results demonstrate the viability of using
large, publicly available datasets to enhance local ecological monitoring
efforts, offering a scalable and efficient alternative to manual annotation
in underrepresented regions.

Keywords: Plankton classification + Deep learning - Convolutional
Neural Networks (CNNs) - Transfer learning - Caribbean biodiversity

1 Introduction

Plankton occupy a fundamental position in aquatic food chains, serving as the
primary producers and initial consumers that support higher trophic levels in
marine and freshwater systems [1]. Phytoplankton, through photosynthesis, con-
tribute nearly half of the world’s oxygen supply, while zooplankton regulate
population dynamics and nutrient cycling by feeding on phytoplankton and pro-
viding a food source for larger organisms such as fish and whales [2]. Beyond
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their ecological roles, plankton mediate carbon transport from surface to deep
ocean layers, making them essential agents in climate regulation. As sentinels
of ocean health, shifts in their abundance and diversity are often early indica-
tors of environmental change, underlining their importance in long-term marine
monitoring programs [3].

Despite their significance, classifying plankton remains a complex task. Man-
ual annotation of microscope imagery requires trained specialists, making the
process both time-intensive and difficult to scale. This challenge is exacerbated
by the high throughput of modern imaging technologies such as the Imaging
FlowCytobot (IFCB) and the In Situ Ichthyoplankton Imaging System (ISIIS),
which can generate millions of images during a single deployment [4]. In regions
like the Caribbean, where biological data collection is less developed, the absence
of automated classification systems and a shortage of taxonomic expertise can
hinder the ability to conduct large-scale and continuous ecological assessments.
In particular, the absence of publicly available datasets from Caribbean waters
restricts the development of machine learning tools tailored to this biodiverse
region.

This research utilizes a dataset collected in the coastal waters of Trinidad and
Tobago, provided by the Department of Life Sciences at UWI. The data collec-
tion pipeline involved extracting plankton samples, imaging them via microscopy,
isolating frames containing individual organisms, and segmenting and labeling
those organisms for training purposes. The labor-intensive nature of this work-
flow, along with the limited size of the resulting dataset, underscores the need for
scalable and automated classification methods. Furthermore, the lack of regional
datasets presents a barrier to training locally effective models from scratch.

To overcome these limitations, this study employs transfer learning from
a well-established external dataset: the NDSB dataset released on Kaggle in
2015. The NDSB dataset, made publicly available during a large-scale data sci-
ence competition, consists of over 30,000 grayscale images distributed across 121
plankton classes [5]. These images were captured using the ISIIS system in tem-
perate and subtropical marine regions. Although geographic and species differ-
ences exist, taxonomic groups appear in both the NDSB dataset and Caribbean
plankton samples, making transfer learning a viable strategy for knowledge reuse.

While transfer learning has been widely adopted in fields like medical imaging
and object recognition, its application to marine plankton classification partic-
ularly in ecologically underrepresented regions remains limited. Most existing
studies focus on well resourced regions in North America, Europe, or East Asia,
where large annotated datasets are available and domain characteristics are more
uniform. In contrast, regions such as the Caribbean face challenges including
limited data, diverse and unique species distributions, and a lack of pretrained
models suited to their specific ecosystems. These gaps present a critical need to
evaluate whether models trained on large foreign datasets can effectively support
classification tasks on sparse, local datasets from data-poor environments.

Advancements in deep learning techniques, for the most part convolutional
neural networks (CNNs), have significantly enhanced the automated identifi-
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cation of plankton from image data. CNN-based systems have been shown to
perform well even with limited data when pretrained on larger collections. Nev-
ertheless, challenges remain in ensuring robustness when transferring models
across datasets with variations in species makeup, image quality, and environ-
mental settings [6]. The intention of this research is to strengthen the classifica-
tion accuracy on the University dataset by utilizing a CNN trained on a merged
dataset that combines both the NDSB Kaggle and the Department of Life Sci-
ences UWI datasets. Model evaluation is focused specifically on the University
test partition to assess how effectively knowledge from the external dataset trans-
fers to the regional context. The resulting system offers a practical and scalable
approach to plankton monitoring in resource-limited regions, while also demon-
strating the broader utility of leveraging global datasets to support regional
ecological research.

This research begins by detailing the data acquisition and preprocessing steps
applied to both local and external plankton image datasets. It then presents the
convolutional neural network architecture and describes the transfer learning
strategies used to assess cross-domain performance. The results section provides
a comparative evaluation of classification accuracy across different dataset con-
figurations. This is accompanied by a discussion of the broader implications for
automated ecological monitoring in data-constrained regions. The research con-
cludes by highlighting its main contributions and outlining potential directions
for advancing plankton classification research.

2 Related Work

Yuan et al. [7] developed a lightweight convolutional neural network (CNN)
tailored for in-situ plankton classification, targeting embedded devices for real-
time ecological monitoring. The study utilized a custom dataset comprising 6,674
plankton images from 12 categories, augmented with environmental metadata
such as sampling depth and time. The authors modified the MobileNetV2 archi-
tecture by integrating coordinate attention modules and streamlining convo-
lutional blocks to optimize for low-latency environments. Experimental results
showed that the improved model achieved an accuracy of 95.46% and recall of
94.48%, with an average inference time of only 6.15 ms per image. When deployed
on the Huawei Ascend Atlas board, the model enabled real-time plankton abun-
dance profiling, underscoring its applicability for autonomous marine sensors.
Hassan et al. [8] proposed a fused deep learning framework for accurate
and interpretable plankton classification using the WHOI benchmark dataset.
Their architecture combines feature maps from InceptionResNetV2 and a cus-
tom network, DeepPlanktonNet. Feature fusion is optimized through the Whale
Optimization Algorithm (WOA), while the LIME (Local Interpretable Model-
Agnostic Explanations) tool is employed to enhance model interpretability. The
proposed method achieved 98.79% accuracy, outperforming prior models on the
WHOI dataset. The use of WOA allowed the model to reduce feature dimen-
sionality, thereby improving both generalization and computational efficiency.
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LIME visualizations confirmed that key plankton structures were the dominant
drivers of model predictions, adding a layer of trust and transparency.

Eerola et al. [9] conducted a comprehensive survey of plankton image classi-
fication techniques, analyzing over two decades of progress from classical fea-
ture extraction to state-of-the-art deep learning models. The review focuses
on multiple datasets including WHOI, ZooScan, and laboratory-captured sam-
ples, addressing the specific challenges faced in aquatic imaging such as class
imbalance, domain shift, and annotation scarcity. The authors evaluated various
model families such as CNNs, transformer-based architectures, ensemble models,
and semi-supervised approaches. They emphasized the importance of lightweight
models for edge deployment and called for more interpretable Al tools in marine
science. This survey provides a useful roadmap for future research at the inter-
section of computer vision and aquatic ecology.

Shi et al. [10] introduced a hybrid quantum-classical convolutional neural net-
work for the classification of phytoplankton imagery. Motivated by the potential
of quantum computing for high-dimensional data processing, their architecture
combines classical CNN layers with quantum variational circuits. A small, con-
trolled laboratory dataset of phytoplankton species served as the testbed for eval-
uating performance. The hybrid model showed faster convergence and achieved
accuracy levels comparable to classical CNN baselines. While the work remains
experimental, it opens the door to leveraging quantum acceleration in ecological
monitoring and highlights the viability of quantum-classical models for complex
image classification tasks.

Liu et al. [11] presented DeepLOKI, a robust plankton classification system
built upon the ResNet-18 architecture, enhanced through self-supervised learn-
ing and cross-device domain adaptation. The dataset consisted of high-resolution
zooplankton images captured using multiple imaging systems, annotated into
taxonomic categories. Pretraining was performed using unlabeled data, followed
by supervised fine-tuning on labeled subsets. The model achieved an overall accu-
racy of 83.9% and was able to generalize effectively across imaging platforms. Its
capacity to recognize rare and morphologically ambiguous taxa demonstrates the
benefits of self-supervised learning in overcoming dataset imbalance and anno-
tation limitations.

3 Datasets

Two distinct plankton image datasets were utilized in this study: a localized
dataset collected by the Department of Life Science at the UWI, from the coastal
waters of Trinidad and Tobago, referred to as the University dataset, and a
larger, publicly available dataset from the NDSB hosted on the Kaggle platform
referred to as the Kaggle dataset.

3.1 University Dataset

The University dataset contains 44 plankton images captured from the nearshore
waters of Trinidad and Tobago. The data represents a limited, region-specific col-
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lection, reflecting the challenges of data acquisition. These samples were prepared
through a detailed laboratory pipeline involving sample extraction, microscopy-
based imaging, and the manual segmentation and labeling of individual organ-
isms, as illustrated in Fig. 1.
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Image

Collection Imaging Segmentation Classification

Fig. 1. Manual laboratory process of plankton image classification.

The dataset captures seven distinct plankton classes: Bacteriastrum, Chaeto-
ceros, Diatoms, Pyrophacus, Tintinnopsis, Zooplankton, and Dinoflagellates. As
shown in Table 1, the distribution of images across classes is imbalanced, reflect-
ing the natural prevalence of these organisms in the sampled marine environ-
ment. The limited size of the dataset makes it difficult to train deep learning
models effectively from the ground up, thereby supporting the need for transfer
learning.

Table 1. Class distribution in the University dataset

Class Name |Image Count

Bacteriastrum |2
Chaetoceros |4
Diatoms 7
Pyrophacus |5
Tintinnopsis |4

Zooplankton |17

Dinoflagellates|5
Total 44

3.2 Kaggle Dataset

The Kaggle dataset is a large-scale collection comprising over 30,000 grayscale
plankton images, categorized into 121 distinct classes. These images were
acquired using the ISIIS, which captures high-resolution underwater imagery
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in natural environments. The dataset covers various categories of plankton, such
as phytoplankton and zooplankton, captured under different imaging scenar-
ios. This variability provides a broad and representative base of visual features,
making the dataset highly suitable for training deep learning models.

In contrast to the smaller and region-specific University dataset, the Kaggle
dataset offers both scale and class diversity. However, it is not uniformly balanced
since some plankton categories contain thousands of images, while others are
represented by only a few samples. Despite this imbalance, the size and diversity
of the dataset support the development of models that are capable of learning
generalized features applicable across different marine environments. As a widely
used benchmark in the field of plankton classification, the Kaggle dataset serves
as a valuable global reference. In this study, it is leveraged as a pretraining
source to enhance classification performance on the smaller, localized dataset
from Trinidad and Tobago through transfer learning. Samples from the Kaggle
plankton dataset are shown in Fig. 2.

-
e
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(a) Sample image from class amphipods {b) Sample image from class ephyra

Fig. 2. Representative samples from the Kaggle plankton dataset.

4 Methodology
4.1 Overview

This section describes the experimental setup and methods used to assess how
well deep learning performs in classifying plankton images, especially when work-
ing with a small amount of locally sourced data. It outlines the datasets used,
the pre-processing steps applied, the CNN architecture employed, and the dis-
tinct training and evaluation scenarios designed to assess the impact of a larger
external dataset on localized classification performance. Three main experimen-
tal configurations were explored, which are one using only the University dataset
for both training and testing, another using just the Kaggle dataset, and a third
combining both datasets for training, while testing was conducted on the Uni-
versity portion. These scenarios were developed to quantify the benefit of trans-
fer learning from a large, diverse external dataset to a smaller, domain-specific
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dataset. Cross-validation methods were integrated to ensure robust and gener-
alizable performance metrics across these scenarios. This framework enables a
comprehensive analysis of how external data can enhance plankton classification
in resource-limited ecological settings.

4.2 Image Loading and Resizing

All images from both the University and Kaggle datasets were loaded using the
Open CV library (cv2.imread). During loading,images were uniformly resized to
a dimension of 128 x 128 pixels.This standardization is necessary to ensure all
inputs to the CNN model have consistent spatial dimensions, regardless of their
original resolution. Images were read in their native color format (3 channels).

4.3 Pixel Normalization

Image pixel intensities, usually spanning 0 to 255, were scaled to a range between
0.0 and 1.0 by converting them to the float32 format and dividing by 255. This
normalization step promotes training stability by placing all input features on a
consistent scale, which can help speed up the optimization process.

4.4 Label Encoding

Original class labels, which were stored as folder name strings, were first trans-
lated into numerical values. These values were then encoded using the one-hot
method, where each label is represented by a binary array with 1 marking the
active class and 0 for all others. This encoding approach is commonly applied in
multi-class classification tasks, particularly when using categorical cross-entropy
as the loss function.

4.5 Data Augmentation

To increase dataset diversity and model robustness, a suite of data augmentation
techniques was applied using Keras’ ImageDataGenerator. These included:

— Rotation: Applying random rotations to images within a specified angle
range to mimic different viewing angles.

— Width and Height Shifts: Moving images along the horizontal or vertical
axis by a certain proportion (e.g., up to 20%) to introduce spatial variation.

— Shearing and Zooming: Distorting images using shear transformations and
scaling up or down by upto 20

— Horizontal Flipping: Flipping images along the vertical axis to capture
mirror-image instances.

— Fill Mode: Filling in newly created pixels after transformations using the
nearest method.

These transformations were applied only during training to avoid information
leakage into the validation or test sets.
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4.6 Train-Test Validation Splits

The University dataset, despite its limited size, was rigorously split to
ensure robust evaluation. Initially, the entire University dataset (Xuniversity,
Yunicencoded) Underwent a single train-test split. A proportion of 20% of the
data was reserved as a dedicated, unseen test set (Xiest—universitys Ytest-uni) for
final model evaluation. The remaining 80% formed the University training set
(Xtrain—university, Ytrain-uni)- This split was performed with shuffle to a fixed ran-
dom sate to ensure reproducibility and a representative distribution of classes
across partitions.

The Kaggle dataset was divided using stratified sampling, with 80% of the
images allocated for training and the remaining 20% reserved for testing. This
stratified train-test split preserved the relative class proportions across both sub-
sets, ensuring that all well-represented classes were adequately sampled during
training and evaluation. A fixed random seed was used to guarantee reproducibil-
ity of the splits, and this partition formed the basis for the baseline performance
scenario using only the Kaggle data.

For the combined training scenario, the Kaggle dataset was used in its
entirety (after re-mapping to align with University classes). The University
training set (Xtrainfuniversitya ytrain—uni) was then combined with (Xkaggle7
Ykaggle-encoded) 10 form the comprehensive training dataset (Xirqin—combined,

ytrain-combined) .

4.7 CNN Architecture

A sequential CNN architecture was designed for plankton image classification.
The model’s design balances computational efficiency with sufficient capacity
to learn complex visual features from the plankton images. The architecture
comprises three convolutional blocks, followed by flattening and dense layers.
The model structure is as follows:

— Input Layer: This is where the model first looks at the image. It takes in
color images that are 128x128 pixels in size. The model starts by scanning
small patches (3x3) of the image using 32 filters and uses a method called
ReLU to help it learn better.

— Pooling Layer 1: MaxPoolingQD((2,2)) Here, the image size is reduced
by half. This makes the model faster and helps it concentrate on the most
essential key components of the image.

— Convolutional Layer 2: In this step, halving the image dimensions increases
the model’s processing speed and sharpens its attention on the most crucial
visual elements.

— Pooling Layer 2: MaXPooling2D((2, 2)) Here, the image size is reduced by
half. This makes the model faster and helps it focus on the most important
parts of the image.

— Convolutional Layer 3: Here, the image size is reduced by half. This makes
the model faster and helps it focus on the most important parts of the image.
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— Pooling Layer 3: MaXPooling2D((2,2)) This layer further condenses the
image data, enabling the model to concentrate exclusively on the most critical
information.

— Flatten Layer: All the data from the previous steps, which is in a 3D format,
is flattened into a straight line of numbers so it can be used for decision-
making.

— Dense Layer 1: This is a fully connected layer with 512 units. It gathers and
processes all the information learned so far to help the model make better
decisions.

— Dropout Layer: Dropout(0.5) This is a fully connected layer with 512 units.
It gathers and processes all the information learned so far to help the model
make better decisions.

— QOutput Layer: Dense (num_classes, activation = softmax) In the final step,
the model decides which class the image belongs to. It does this by giving
each possible class a score and choosing the one with the highest value, using
something called a softmax function.

The model utilized the Adam optimizer during compilation, benefiting from its
adaptive learning rate that supports efficient and reliable training in deep learn-
ing applications. For loss calculation, categorical cross-entropy was employed,
making it well-suited for handling multi-class classification tasks with one-hot
encoded targets. Model performance was monitored using accuracy as the pri-
mary metric.

4.8 Evaluation Metrics

A diverse set of evaluation metrics was utilized to thoroughly analyze how well
the model performed. Each metric provided specific information that helped
assess different dimensions of classification accuracy and reliability.

— Accuracy: Accuracy tells us how many predictions the model got right over-
all. It adds up the number of correct positive and negative predictions and
compares them to the total number of predictions. As shown in Eq. (1), accu-
racy is computed as the ratio of correctly predicted samples (true positives
and true negatives) to all predictions made. However, it may give a false sense
of performance when the dataset has uneven class sizes.

TP+TN (1)
TP+TN+FP+FN

— Loss: Loss is a value that shows how far the model’s predicted answers are
from the actual ones. A smaller loss means the model is making better pre-
dictions. The specific method used here, called categorical cross-entropy, is
designed for problems where there are multiple possible output categories.
Equation (2) defines this loss as the negative log-likelihood of the true class
probabilities.

Accuracy =

Loss = — Z y; log(yi) (2)



28 M. Ramberran et al.

— Precision: Precision measures how often the model is correct when it pre-
dicts something as positive. High precision means the model does not make
many false positive errors. It’s especially important when predicting some-
thing wrongly as positive can cause problems. As shown in Eq. (3), precision
is the ratio of true positives to the total predicted positives.

TP
Precision — — ~ 4+
recision = s (3)
— Recall (Sensitivity): Recall looks at how well the model finds all the actual
positive cases. It’s important in situations where missing a true positive (like
a medical diagnosis) can be harmful. High recall means the model finds most
of what it should. Equation (4) defines recall as the ratio of true positives to

all actual positives.

TP
N=_ - 4
Recall = 75 7w ()

— F1-Score: The Fl-score combines precision and recall into one number. It
balances both, which is helpful when you need to consider both missed pos-
itives and incorrect positives at the same time. Equation (5) shows that the
F1-score is the harmonic mean of precision and recall.

Precision - Recall

Fl1=2.
Precision + Recall

(5)

Confusion matrices provide a detailed view of class-level performance by orga-
nizing predictions in a tabular format. They display the relationship between
the predicted labels and the true labels across all classes. In this matrix, rows
indicate the actual classes, while columns represent the predicted classes. Cor-
rect predictions appear along the diagonal, while incorrect ones are shown in
the off-diagonal positions. This format helps to pinpoint recurring classification
errors and identify which classes are often misclassified. This visualization allows
for the identification of systematic errors, such as specific classes being consis-
tently confused with others. Analyzing confusion matrices is particularly useful
in multi-class classification tasks to assess per-class strengths and weaknesses of
the model.

4.9 Implementation

All experiments were conducted using Google Colab Pro, which provided access
to cloud-based GPU acceleration. Utilizing Colab Pro’s high random access
memory (RAM) environment and Graphics Processing Units (GPUs) signifi-
cantly reduced training and inference times, making it feasible to experiment
with multiple configurations efficiently. All codes were implemented in Python
using TensorFlow and OpenCV libraries.
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4.10 University Dataset Baseline

This setup served as the benchmark for evaluating CNN performance using only
locally sourced data. The CNN model was both trained and evaluated on the 44-
image University dataset. The dataset was divided into 80% for training and 20%
for testing, with stratification by class to preserve label distribution. Training
was carried out over 20 epochs, incorporating early stopping based on validation
loss. To address class imbalance, techniques such as data augmentation and class
weighting were used.

4.11 Kaggle Dataset Baseline

This scenario aimed to establish a performance baseline for the CNN when
trained solely on the large, global Kaggle dataset that had over 30,000 images.
The dataset was carefully selected to improve training effectiveness by focusing
on categories that exhibit clear and consistent visual characteristics. The model
was trained and evaluated using an 80/20 train-test split. Class weighting and
data augmentation were applied, and the CNN was trained for 20 epochs.

4.12 Combined Training with University-Focused Baseline

This is the core experimental scenario designed to investigate the primary
research question on whether incorporating the Kaggle dataset improves clas-
sification performance on the limited University dataset. It involved combining
the University training subset with the Kaggle dataset to create a diverse and
enriched training set. A total of over 30,000 Kaggle images were incorporated
to leverage their extensive feature variability. To maintain label consistency, a
unified label map was generated and the Kaggle data was reindexed accordingly.
The combined dataset was shuffled with a fixed seed prior to training to ensure
a randomized yet reproducible sample distribution. Evaluation was conducted
exclusively on the University test partition to isolate the effects of external data
on local classification performance.

5 Results

This section summarizes the results obtained from three experiments aimed at
assessing CNN-driven plankton classification across different levels of data avail-
ability. Each scenario progressively explores the impact of training data scale
and source:

1. Training exclusively on the small, localized University dataset.

2. Training on a large, diverse global dataset from Kaggle.

3. Combining both datasets to assess the benefits of transfer learning on perfor-
mance over the local test set.

Evaluation metrics include training and test accuracy, loss, confusion matrices,
and class-wise F'l-scores, providing a comprehensive view of model effectiveness
across different training regimes.



30 M. Ramberran et al.

5.1 University Dataset

Training on the small University dataset of 44 images achieved limited success.
The CNN model achieved a validation accuracy of 33.3%, with a training accu-
racy of 62.7% and a validation loss of 1.875. These results are illustrated in Fig. 3,
which shows the accuracy and loss trends over training epochs. The confusion
matrix revealed that only a subset of classes was predicted correctly, with many
predictions biased toward the majority class. Precision and recall were low across
most classes, indicating overfitting and limited generalization. The test accuracy
was 22.2%.

The confusion matrix highlighted a strong prediction bias toward dominant
classes such as Zoo plankton, while minority classes like Bacteriastrum and
Tintinnopsis were consistently misclassified.
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Fig. 3. CNN Performance metrics for training on the University dataset.

The low performance in this scenario can be attributed to the extreme scarcity
of training data, which severely limited the model’s ability to learn discrimi-
native features. The significant overfitting gap between training and validation
accuracy suggests that the model memorized the training examples rather than
learning generalizable patterns. The confusion matrix reveals that predictions
were disproportionately skewed toward the majority class (Zooplankton), which
is expected in highly imbalanced datasets without strong regularization or prior
knowledge. These findings emphasize the limitations of training deep models
from scratch in data-constrained regions.

5.2 Combined Training with University-Focused Evaluation

This scenario demonstrated significant improvement. The model trained on over
30,000 images achieved a test accuracy of 55.6% on the University dataset, more
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than double the performance of Scenario 1. The training accuracy reached 89%,
and validation accuracy peaked at 55.6%, with reduced validation loss (1.41).
These results are illustrated in Fig. 4, which shows the accuracy and loss trends
over training epochs. The confusion matrix indicated better coverage across
classes, though some misclassification remained. Notably, the model learned to
recognize classes like Diatoms and Chaetoceros more accurately, indicating suc-
cessful knowledge transfer from the Kaggle dataset to the local domain. Com-
bining the Kaggle dataset with the University training set significantly improved
model performance.
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Fig. 4. Performance metrics during training of the CNN on the combined training with
University-focused evaluation.

The noticeable performance gain in this scenario illustrates the impact of transfer
learning, where the CNN pretrained on diverse Kaggle data was able to extract
general visual features transferable to the University dataset. Interestingly, cer-
tain classes like Diatoms and Chaetoceros showed marked improvement, likely
because their morphological traits are well-represented in the Kaggle dataset.
However, residual misclassifications indicate that domain shift effects, such as
different imaging conditions or subtle species-level differences, still present chal-
lenges. This suggests that while transfer learning improves performance, domain-
specific fine-tuning remains critical for peak accuracy.

5.3 Kaggle Dataset

Training solely on the filtered Kaggle dataset yielded the highest performance,
with a final test accuracy of 76.6% and a test loss of 0.77. The classifica-
tion report showed strong precision, Fj, and recall scores across the classes.
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Top-performing classes included trichodesmium_puff, chaetognath_other, and
copepod_cyclopoid_oithona_eggs. In contrast, underperforming classes such as
unknown_unclassified and detritus_blob highlighted potential labeling or feature
ambiguity. The learning curves (Fig.5) exhibited stable convergence with mini-
mal overfitting, underscoring the effectiveness of the data augmentation strate-
gies and class balancing techniques applied during training.
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Fig. 5. Performance metrics during training of the CNN on the Kaggle dataset.

The high accuracy achieved when training and testing solely on the Kaggle
dataset reflects the internal consistency and large volume of data available in
that benchmark. The low test loss and high precision across most classes confirm
that the model performs well when data is abundant and class distributions are
broad.

5.4 Results Comparison

To holistically compare model performance across the three experimental scenar-
ios, Table 2 shows the test accuracy achieved under each setting: training solely
on the University dataset, exclusively on the Kaggle dataset, and on a combined
dataset evaluated on the University test set.

The progression across these scenarios highlights a core insight, that is deep
learning models depend heavily on the availability and diversity of training
data. While the Kaggle-only scenario offers strong baseline performance, the
University-only setup fails due to data insufficiency. Incorporating a large-scale
external dataset such as Kaggle significantly improves performance. The com-
bined approach achieves more than double the accuracy of the University-only
baseline. It effectively balances generalization and local adaptation, proving the
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Table 2. Summary of performance across scenarios

Training Scenario Test Accuracy (%) Test Loss
University 22.2 1.875
Combined (Kaggle 4+ Univ)|55.6 1.412
Kaggle 76.6 0.7729

utility of transfer learning for ecological applications in resource-limited regions.
Notably, this improvement comes despite the model being evaluated solely on
University data, affirming the hypothesis that diverse external datasets can
enhance generalization in localized, resource-constrained ecological settings.

6 Discussion

This section interprets the results presented previously, explaining their signifi-
cance and situating them within the broader context of plankton classification
and deep learning. It moves from the specific findings to their wider implica-
tions, offering insights into the effectiveness of the proposed methodology and
its relevance to ecological monitoring in data-limited regions.

6.1 Key Findings and Hypothesis Validation

This study primarily investigated the efficacy of leveraging a large, publicly avail-
able dataset via transfer learning to enhance plankton classification performance
on a significantly smaller, regionally specific dataset. The results demonstrate
that combining the University dataset’s training partition with the extensive
Kaggle dataset during CNN training yielded superior classification performance
on the unseen University dataset, compared to training on the University dataset
alone. This substantiates the central hypothesis that is augmenting limited local
data with a large, relevant external dataset through transfer learning signifi-
cantly improves model generalization for regional ecological monitoring.
Notably, the University and Kaggle datasets did not share any explicitly
labeled classes in common. However, qualitative inspection revealed that sev-
eral classes within the University dataset, such as Diatoms and Dinoflagellates,
encapsulated a variety of subcategories and morphological variants. These sub-
classes are well represented in the Kaggle dataset, as evident from the WHOI tax-
onomy [12], suggesting that the model was able to recognize intra-class diversity
beyond the scope of human labeling. This further supports the premise that the
CNN;, through transfer learning, not only generalized well but in some instances
demonstrated greater discriminatory power than manual labeling.

6.2 Interpretation of Performance Improvements

The performance enhancement observed with the Kaggle dataset can be
attributed to the foundational principles of transfer learning. The vast volume
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and diversity of images within the Kaggle dataset enabled the CNN to learn a rich
hierarchy of generalizable visual features such as edges, textures, and morpho-
logical structures common across various plankton taxa. When fine-tuned with
the limited University data, these pre-learned features served as a robust start-
ing point, allowing the model to adapt efficiently to the nuances of Caribbean
plankton imagery without requiring extensive local examples for initial feature
extraction.

This approach effectively mitigated the challenges posed by the small size and
class imbalance of the University dataset. Training a CNN from scratch under
such constraints would likely result in poor generalization due to overfitting and
insufficient exposure to varied data points. Instead, transfer learning provided
a mechanism for knowledge reuse, where globally learned patterns were refined
for local specificity.

6.3 Strengths of the Approach

A major strength of the proposed method is its ability to scale deep learning
to environments with limited labeled data. The use of the well-curated global
Kaggle dataset allowed for effective feature learning, while data augmentation,
class reindexing, and label harmonization ensured that model training was not
adversely impacted by dataset heterogeneity. The experimental framework also
incorporated robust evaluation practices, including stratified train-test splits,
confusion matrices, and F1-score analysis to ensure fair assessment of general-
ization performance.

6.4 Limitations

Although the outcomes are encouraging, the study is not without limitations.
The main drawback lies in the limited size of the University dataset, which
contains only 44 images. While transfer learning and data augmentation signifi-
cantly improved performance, the limited diversity of actual local examples still
poses a fundamental barrier to achieving high classification performance for all
specific subcategories or rare species within the Caribbean context.

While newer plankton collections have appeared in recent years, none match
the open availability, single-organism vignette format, and class breadth of the
NDSB dataset from Kaggle. More recent options like the WHOI IFCB system,
while extensive with over 3 million continuous flow-cytometry images across 70
classes, lack pre-segmented, one-cell vignettes and typically require institutional
access agreements [13]. Similarly, the ZooScan system generates large mixed-
sample scans demanding offline segmentation and manual validation, which
would introduce significant additional computational and manual overhead to
the rapid, transfer learning based classification pipeline employed in this study.
Since no open-access release since 2015 offers this unique combination of scale,
taxonomic diversity, and single-organism segmentation, the NDSB Kaggle col-
lection remains the sole viable public benchmark aligning with the objective of
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enhancing local data performance through readily available global knowledge
transfer.

Moreover, although class remapping was performed, the inherent class imbal-
ance within both the Kaggle and University datasets likely influenced the per-
class performance, leading to lower recall for minority classes, even with class
weighting. The Kaggle dataset itself, though extensive, may not fully capture the
morphological diversity or environmental conditions specific to the Caribbean
region. As a result, some domain mismatch effects persisted.

Another challenge stems from the visual complexity and small physical size of
some plankton taxa, which are often difficult to distinguish even by expert anno-
tators. While the CNN model exhibited strong generalization, accurate identifi-
cation of minute or visually ambiguous classes remains an ongoing hurdle.

Furthermore, by conducting experiments on Google Colab Pro, the study
leveraged accessible cloud infrastructure to accelerate training. However, this
platform introduced variability in performance due to shared resource alloca-
tion. This fluctuation in compute availability occasionally affected model con-
vergence consistency and training time, presenting both a technical and financial
consideration for researchers dependent on such environments.

6.5 Future Work

Future studies should aim to increase both the quantity and taxonomic variety
of Caribbean plankton datasets, enabling a more comprehensive analysis of the
region’s biodiversity. This would provide a more comprehensive local training
base, reducing reliance on external datasets for effective fine-tuning. Advanced
transfer learning strategies, such as domain adaptation, few-shot learning, or
meta-learning, could further enhance classification performance for rare or under-
represented classes.

Exploring alternate CNN architectures, including lightweight models opti-
mized for mobile or edge deployment, would be valuable for real-time monitoring
systems. Ultimately, integrating these classification systems into in-situ plank-
ton monitoring pipelines could support continuous ecological assessments and
improve responsiveness to environmental changes in under-monitored regions.

7 Conclusion

This study demonstrates the feasibility and effectiveness of using transfer learn-
ing from a large, public plankton image dataset (Kaggle and NDSB) to enhance
classification performance on a small, localized dataset from Trinidad and
Tobago. The experimental results showed that the combined training scenario
leveraging both global and local data achieved a test accuracy of 55.6%, more
than double the accuracy obtained when training solely on local data (22.2%).
This highlights the substantial performance gap between models trained solely
on limited local data and those augmented with globally sourced data. The
combined training scenario improved test accuracy by over 30% compared to the
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local baseline, validating the hypothesis that incorporating external datasets can
substantially improve classification accuracy in data-constrained environments.

In particular, the successful transfer of learned features across geographi-
cally and taxonomically diverse datasets underscores the robustness of convolu-
tional neural networks for marine image classification tasks. Despite the absence
of exact label alignment between datasets, the model effectively generalized to
local plankton categories, benefiting from the rich morphological representations
present in the external data.

This study provides a practical framework for regions with limited annotated
datasets to deploy deep learning based classification systems without requir-
ing extensive local labeling efforts. It demonstrates a scalable and cost-effective
strategy for biodiversity monitoring, with implications for advancing automated
ecological assessments in underrepresented marine regions.

Future directions include expanding the local dataset for better coverage of
Caribbean taxa, integrating domain adaptation techniques to address dataset
discrepancies more robustly, and exploring edge-deployable models for real-time
environmental monitoring. Ultimately, this study contributes to the broader goal
of democratizing access to intelligent environmental sensing systems by aligning
global resources with regional conservation needs.
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